

ROB311: Ballbot Final Report

Authors: James Oosterhouse, Caitlin Roberts, and Wyatt Wrubel

Team A10

December 16, 2025

1

Introduction
This report describes our Ballbot system created for the University of Michigan Robotics class, ROB311: How to
Build Robots and Make Them Move. Our robot is based off of the MBot ecosystem and is optimized to balance and
steer while on top of a standard basketball. We designed mechanical aspects of our robot in Onshape and we used
PID controllers to create the control structure. Our robot used sensor input from an on-board IMU as well as motor
encoders. Our goal was to create a Ballbot that can compete and win our in-class competition, which required
long-term balancing and steering algorithms to be effective and stable. We were proud that our ballbot took 3rd
place in our in-class competition and was able to consistently balance despite its constraints.

Methodology
Device Communication & Information Transfer

Figure 1. Ballbot System Architecture

Our Ballbot used a two computer control stack consisting of a Pico microcontroller that handles all of the low-level
processing, and a Raspberry Pi for high-level control. This separation of boards allows for sensor data and motor
actuation to be handled much faster from the computationally heavy control logic. The Pico interfaces directly with
our onboard sensors, including the IMU and the motor encoders. During each cycle, the Pico receives data from
them and sends them back to the Raspberry Pi. The Pico also receives commands from the Raspberry Pi, and sends
those signals right to the motor drivers. The Raspberry Pi runs the main control code at 200 Hz. It takes all of the
data from the Pico, evaluates it against the control algorithms, and generates the proper motor outputs. Both
directions of this communication happen through USB serial. When needed, our PS4 controller also sends feedback
to the Raspberry Pi through bluetooth. This information is then used in our control algorithms.

Controllers & Actuation

Figure 2. Ballbot Balance Control Loop​ ​ ​ ​ Figure 3. Ballbot Steering Control Loop

2

Our Ballbot uses two coupled feedback control loops, one for balancing and one for steering. Both controls use the
control architecture articulated in the above section. The Balance Controller is the primary loop that is always active,
whereas the steering control modifies the balance behaved to produce controlled motion at a desired lean angle. The
balance controller works by stabilizing the robot's lean angles in the X and Y axes. The onboard IMU measures
these angles, and the balance controller computes the error between robot position and desired angle. Our tuned PID
values as discussed in the next section allowed us to send commands back to the motors on our robot, and maintain
our balance. Our steering controller allows both translational and rotational motion while maintaining our robot’s
balance. Our desired steering location is determined from user joystick input on a PS4 controller, and converted to a
desired angle. This steering PID loop now controls our robots desire to lean in that direction, with smoothing in
place to both lean to and from that angle. The balance and steering control outputs are summed together to form the
total control effort for our ballbot, outputting torque commands to our motors.

PID Tuning
For our final PID values, we spent many hours meticulously honing them in until we found the optimal functionality
for our own bot. Our final values were: Kp = 13, Ki = 12, Kd = 0.1. We started by tuning just Kp with no other gain
involved. Initially adjusting the value in large amounts proved beneficial because once we saw our bot oscillating on
top of the ball, we knew we’d gone too high. From there we were able to reduce the value at smaller increments until
we landed on 13. With just Kp, our bot was balancing considerably better than the system without any error
correction, but still needed some work.

Thus, we decided to introduce Kd next. To our surprise, we consistently found that Kd was making a negative impact
on balance performance, so we wanted to minimize it to a point where our bot wasn’t too jumpy but could still
respond to quick changes in movement. This led to us settling at a value of 0.1, since anything above that was too
reactive and anything below didn’t assist as much as possible. Even with both of these gains our bot still couldn’t
hold a single position for very long, and the longer it balanced the worse it performed.

This led us to introducing a Ki term to counteract accumulated error in the system. We started off with incremental
small values (increase by 0.02 with Ki < 1); however, this made little to no positive impact on the balancing, so we
decided to increase Ki by whole numbers to see what happens. This made a massive improvement to our system and
seemed to be the thing we were missing all along. In search of finding the best Ki, we pushed the value to 50, which
proved to be much too far. We then decreased to 30, to 20, to the teens, then we settled at 12. Before Ki was
involved, our bot would sloppily balance for about 15 seconds, then lean one way and never recover. However, the
introduction of Ki solved both of these issues. The motors now actuate on a very small scale to keep the ball in
virtually one spot on the floor and even if the bot does lean, it can recover and remount on top of the ball.

Our Best Practices for Control
We attempted to implement several best practices to increase the accuracy of our control algorithm but ultimately
ended up using only two of them: dead-band of 0.3° around 0° on the IMU and low-pass filter of controller steering
commands. The dead-band essentially removes small amounts of noise when the bot is perfectly mounted on top of
the ball. This worked very well because it allows for less accumulation of error and less unnecessary small motor
actuation, which we noticed during testing. The low-pass filter acts as a mode of smoothing the steering commands
that come from the joystick. A human is inherently bad at making precise, continuous movements of their thumb on
a joystick, resulting in jerky inputs which are devastating to the adjustment of the ballbot’s reference angle. This
filter ensures that quick movements of the joystick won’t throw the bot off of the ball, but instead correlate to a
smooth change in reference angle, enabling effective steering.

We also attempted to dead-band the joystick and limit integral gain windup. Though these are good ideas in theory,
we ended up having issues with both. Dead-banding the joystick in a small amount should’ve just removed any
physical stick drift in the controller when at rest, but it ended up rendering our steering algorithm useless. In other

3

words, motion of the joystick wouldn’t correlate to any physical steering of the ballbot. Additionally, our idea for
limiting integral gain windup came from the fact that Ki increased significantly whenever the bot and ball would
start to “run away,” always resulting in the bot falling off. We thought that if we set a limit to the max Ki then it
would help the runaway situation, but it just made it even worse. This does make sense because if Ki is limited when
leaning, then the bot’s control efforts are less than they could be, resulting in inefficient lean recovery.

Results
IMU vs Encoder Spin Speeds
In order to collect data comparing IMU measurements to encoder calculations of spin speed (d𝜗z), we controlled the
ball bot with 4 different duty cycles. Each cycle was 3 seconds, with Tz = [0.75, 1.5, 2.25, 3] for each of the four
cycles, respectively. We controlled the torque output for three seconds to be able to trim noisy data during
acceleration between duty cycles.

Figure 4. Ballbot IMU Measurements vs Encoder Calculations

While varying Tz for each cycle, we recorded IMU angles (𝜗x, 𝜗y, 𝜗z) and encoder angular velocities (d𝜑x, d𝜑y, d𝜑z)
from the ballbot datalogger. The orientation angles (𝜗x, 𝜗y, 𝜗z) are obtained from the ballbot’s IMU measurements.
Each angle is relative to the initial reference value to express the ballbot’s orientation relative to the starting pose. To
reduce the effect of sensor noise and prevent small, unnecessary corrections, we apply a deadzone filter to each
angle. The deadzone filter clips any angle less than the deadzone (0.3°) to zero, while values that exceed this
threshold are unchanged. This filtering step improves the stability of control and allows for smoother angle error
correction when balancing and steering the ball-bot.

The ballbot encoder data measures the position of each wheel on the ballbot. The raw encoder counts are converted
into wheel rotation angles (𝜓1, 𝜓2 ,𝜓3) in radians. Wheel angular velocities (d𝜓1, d𝜓2 , d𝜓3) are computed by
differentiating psi123 with respect to time. We then map the wheel angular velocity to the ball’s motion with a
kinematic conversion model. The ball’s angular velocities (d𝜑x, d𝜑y, d𝜑z) as seen in Figure 4 capture the rotational
motion of the ball.

Once we obtained the IMU and encoded angular velocities at four different Tz duty cycles we used Matlab to
present Figure 4, a comparison of the Z-axis angular velocity measured by the IMU and estimated from the wheel
encoders. For each Tz value, we extracted a smaller time window without ballbot accelerations, and calculated the
mean and standard deviations for d𝜗z and d𝜑z .

4

As seen in Figure 4, the angular velocity estimated from the wheel encoders is consistently higher than the angular
velocity measured by the IMU. This difference can be explained by factors related to sensing, assumptions when
modeling, and interactions between the ball and the wheel. First, the encoder-based angular velocity is mapped using
a kinematic model that assumes ideal rolling conditions without slip. In reality, slip occurs, which causes the wheels
to rotate slightly faster than the ball itself, leading to higher values of d𝜑z. Additionally, the deadzone filter that we
apply to IMU angles reduces sensitivity to small rotations that are close to zero. Although this is helpful for balance
control, it may contribute to a lower average angular velocity from the IMU relative to the encoder’s estimate.

Balance Control
To develop the balance controller, we tuned the PID controller based on the ballbot’s observed behaviors at different
proportional (Kp), integral (Ki), and derivative (Kd) values. The proportional term responds to the current error, the
integral term reduces steady state error, and the derivative term dampens oscillations by reacting to small changes in
error. Figure 5 shows the ballbot’s lean angle, individual PID control gains, and resulting torque output along the
x-axis for 15 seconds of balancing. For our controller, the proportional term contributes the most to the torque output
and is the most dominant component of our balance control.

 Figure 5. Ball Angle, PID Control Efforts, and Total Torque for Balance

When comparing subplots two and three in Figure 5, we see that the shape of the torque plot closely matches the
shape of the proportional control term of the PID controller. This indicates that the balance control’s response is
primarily driven by the current lean angle error. In contrast, the integral and derivative terms have smaller
magnitudes overall. We theorize that this is because the integral and derivative gains work to remove different types
of error, past and future error. The integral and derivative terms serve mainly to correct for residual error and
oscillations, rather than drive the overall balance control effort.

Steering Control
When comparing our ball’s odometry to actual position, we used our steering control to drive the ballbot in a square
approximately 2m x 2m. In order to determine the robot’s odometry, we recorded the ball’s angular position (𝜑x and
𝜑y) during the steering control. 𝜑x and 𝜑y are calculated based on a kinematic conversion from the wheel rotation
(𝜓1, 𝜓2 ,𝜓3). The ballbot’s wheel rotation angles are determined based on encoder readings on each of the wheels.
Using the equations (1) xk = -rk * 𝜑y and (2) yk = rk * 𝜑x, with rk = 0.121m (the radius of the ball) we are able to
calculate the ballbot’s odometry. Figure 6 plots the ballbot’s odometry when driving in a square.

5

 Figure 6. Ball Odometry Driving a 2m x 2m Square

As seen in the figure, the ball’s odometry shows a lot of drift from the actual position relative to the start. This
discrepancy is due to accumulated odometry error over time. The odometry is computed entirely from wheel
encoder measurements. Any small error in the encoder readings or kinematic conversions from wheel rotations to
ball angles accumulates overtime. Minor inaccuracies can cause drift, resulting in a lopsided or skewed square, like
seen in Figure 6.

Second, the wheels can slip or have uneven contact on the surface of the ball. When steering the ballbot, especially
at square corners, slip is likely to occur on the ball, causing the measured wheel rotation to differ from the actual ball
motion. This leads to incorrect 𝜑xand 𝜑y values and therefore incorrect position estimates. Over the course of the
square path, these errors accumulate and produce a shape other than a perfect square. Finally, we did not implement
a position PID controller, so there was no mechanism in our ballbot to correct for odometry errors. Therefore, the
ballbot’s odometry estimate will differ from the true position of the ball.

Conclusion & Future Work
In this project, we designed, built, and tested a Ballbot that balances and steers on a standard basketball using an
IMU, motor encoders, and two PID loops for balancing and steering. We quantified performance through logged
experiments including IMU vs encoder yaw-rate comparisons, steady-state balancing plots, and a square driving test
for odometry. The results showed that encoder-based yaw-rate estimates were consistently higher than IMU
measurements, which we attribute mainly to slip and non-ideal rolling that violate kinematic assumptions, and our
balancing data showed that the proportional term dominated the control effort while the integral and derivative terms
mainly reduced residual bias and oscillations. The square driving test demonstrated significant odometry drift over
time due to accumulated encoder and modeling error and the lack of a position-level correction loop.

With more time, we would improve robustness by reducing slip sensitivity through better wheel-ball contact, adding
stronger filtering and saturation best practices in the control pipeline, and implementing mechanical changes to the
robot to overall increase its effectiveness. Some of these mechanical changes may include increased robot Center of
Mass or adding balancing fingers as seen in the ETH Zurich paper. Overall, this project was a fantastic learning
experience and we are very satisfied with the robot we developed.

6

Appendix A - Ballbot Figures and Terms

Figure A. Wheel Rotation Angles, Top View

Wheel Rotation Angles (𝜓1, 𝜓2 ,𝜓3) as calculated from motor encoder ticks. 𝜓1, 𝜓2 ,𝜓3 are used to calculate the ball’s
angular position (𝜑x, 𝜑y, 𝜑z) in the x-y-z plane. In turn, we can calculate the changes in these terms by taking the
derivative of each.

Figure B. Position of the Ball, Side View

𝜗x as seen in the figure, represents the position of the ball relative to its starting position (𝜗x = 0). As discussed in the
balance control portion of the report, the angle of the ballbot is used to drive balance control.

7

Figure C. CAD of Motor Mounts, Various Views

Though we were given creative liberty in designing our motor mounts, there were still requirements we had to meet
to ensure proper ball bot functionality. The mounts must: not interfere with internal bot components, ensure 45°
wheel contact with the ball, mount to the laser cut holes on the baseplate, and securely house our motors.
Satisfaction of these requirements can be found in Figure C.

8

Appendix B - Additional Figures

Figure 1. Ballbot System Architecture (Enlarged)

9

Figure 2. Ballbot Balance Control Loop (Enlarged)

10

Figure 3. Ballbot Steering Control Loop (Enlarged)

11

Ballbot Team A10 (left to right): Wyatt Wrubel, James Oosterhouse, and Caitlin Roberts

12

Appendix C - Python Code

File 1: PID_Controller.py
"""
General framework for ball-bot control for students to update as desired.
You may wish to make multiple versions of this file to run your ball-bot in
different modes!

struct mbot_balbot_feedback_t
{
 int64_t utime;
 int32_t enc_ticks[3]; // absolute postional ticks
 int32_t enc_delta_ticks[3]; // number of ticks since last step
 int32_t enc_delta_time; // [usec]
 float imu_angles_rpy[3]; // [radian]
 float volts[4]; // volts
}

"""

import time
import lcm
import threading
import numpy as np
from mbot_lcm_msgs.mbot_motor_pwm_t import mbot_motor_pwm_t
from mbot_lcm_msgs.mbot_balbot_feedback_t import mbot_balbot_feedback_t
from DataLogger3 import dataLogger
from ps4_controller_api import PS4InputHandler

Constants for the control loop
FREQ = 200 # Frequency of control loop [Hz]
DT = 1 / FREQ # Time step for each iteration [sec]
PWM_MAX = 0.98 # Max motor signal for full accel/decel of motor test (keep
between 0 and 1)
N_GEARBOX = 70 # Motor gearbox ratio
N_ENC = 64 # Ticks per revolution of encoder
R_W = 0.048 # Radii of omni-wheels [m]
R_K = 0.121 # Radius of basketball [m]
IMU_DEADZONE = np.radians(.3) # 0.5 degrees in radians ≈ 0.00873 rad

Global flags to control the listening thread & msg data
listening = False
msg = mbot_balbot_feedback_t()
last_time = 0
last_seen = {"MBOT_BALBOT_FEEDBACK": 0}

def feedback_handler(channel, data):
 """Callback function to handle received mbot_balbot_feedback_t messages"""
 global msg
 global last_seen
 global last_time
 last_time = time.time()

13

 last_seen[channel] = time.time()
 msg = mbot_balbot_feedback_t.decode(data)

#Filtering
def apply_deadzone(x, deadzone):
 """
 Apply a deadzone filter to sensor readings.
 Values within ±deadzone are set to zero to filter out noise.
 This prevents constant small corrections due to sensor noise.
 """
 if abs(x) < deadzone:
 return 0.0
 return x

def lcm_listener(lc):
 """Function to continuously listen for LCM messages in a separate thread"""
 global listening
 while listening:
 try:
 lc.handle_timeout(100) # 100ms timeout
 if time.time() - last_time > 2.0:
 print("LCM Publisher seems inactive...")
 elif time.time() - last_seen["MBOT_BALBOT_FEEDBACK"] > 2.0:
 print("LCM MBOT_BALBOT_FEEDBACK node seems inactive...")
 except Exception as e:
 print(f"LCM listening error: {e}")
 break

Motor encoder ticks to wheel angle (radians)
def calc_enc2rad(ticks):
 rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX)
 return rad

Calculate motor torques T1, T2, T3 from Tx, Ty, Tz
def calc_torque_conv(Tx,Ty,Tz):
 u1 = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty)
 u2 = (1.0/3.0)*(Tz + np.sqrt(2)*(-1.0*np.sqrt(3)*Tx + Ty))
 u3 = (1.0/3.0)*(Tz + np.sqrt(2)*(np.sqrt(3)*Tx + Ty))

 return u1, u2, u3

Calculate ball angular position from encoder odometry
def calc_kinematic_conv(psi1,psi2,psi3):
 phix = np.sqrt(2.0/3.0) * (R_W/R_K) * (psi2 - psi3)
 phiy = np.sqrt(2)/3.0 * (R_W/R_K) * (-2 * psi1 + psi2 + psi3)
 phiz = np.sqrt(2)/3.0 * (R_W/R_K) * (psi1 + psi2 + psi3)

 return phix, phiy, phiz

def func_clip(x,lim_lo,lim_hi):

14

 # A function to clip values that exceed a threshold [lim_lo,lim_hi]
 if x > lim_hi:
 x = lim_hi
 elif x < lim_lo:
 x = lim_lo
 return x

def main():
 # === Data Logging Initialization ===
 # Prompt user for trial number and create a data logger
 trial_num = int(input("Test Number? "))
 filename = f"PID_control_{trial_num}.txt"
 dl = dataLogger(filename)

 # === LCM Messaging Initialization ===
 # Initialize the serial communication protocol
 global listening
 global msg
 lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=0")
 subscription = lc.subscribe("MBOT_BALBOT_FEEDBACK", feedback_handler)
 # Start a separate thread for reading LCM data
 listening = True
 listener_thread = threading.Thread(target=lcm_listener, args=(lc,),
daemon=True)
 listener_thread.start()
 print("Started continuous LCM listener...")

 #print("Waiting for first IMU message...")
 #if not wait_for_feedback():
 # print("[WARN] No IMU feedback.")

 # theta_x_0, theta_y_0, theta_z_0 = calibrate_imu(duration=5)

 enc_pos_1_start = msg.enc_ticks[0]
 enc_pos_2_start = msg.enc_ticks[1]
 enc_pos_3_start = msg.enc_ticks[2]

 # === Controller Initialization ===
 # Create an instance of the PS4 controller handler
 controller =
PS4InputHandler(interface="/dev/input/js0",connecting_using_ds4drv=False)
 # Start a separate thread to listen for controller inputs
 controller_thread = threading.Thread(target=controller.listen, args=(10,))
 controller_thread.daemon = True # Ensures the thread stops with the main
program
 controller_thread.start()
 print("PS4 Controller is active...")

 try:
 command = mbot_motor_pwm_t()
 # === Main Control Loop ===

15

 print("Starting steering control loop...")
 time.sleep(0.5)

 # Store variable names as header to data logged, for easier parsing in
Matlab
 # TODO [IF DESIRED]: Update data header variables names to match actual
data logged (at end of loop)
 data = ["i t_now phi_x phi_y"]
 dl.appendData(data)

 i = 0 # Iteration counter
 t_start = time.time()
 t_now = 0

 enc_pos_1_start = msg.enc_ticks[0]
 enc_pos_2_start = msg.enc_ticks[1]
 enc_pos_3_start = msg.enc_ticks[2]

 # Initialize Torque Commands
 u1 = 0
 u2 = 0
 u3 = 0

 # Starting IMU Orientation
 theta_x_0 = msg.imu_angles_rpy[0]
 theta_y_0 = msg.imu_angles_rpy[1]
 theta_z_0 = msg.imu_angles_rpy[2]

 desired_theta = 0.0 # upright

 Kp = 13 # Proportional gain
 # Between 0-15
 Ki = 12 # Integral gain
 Kd = .1 # Derivative gain

 # Starting error and integral terms
 prev_error_x, prev_error_y = 0.0, 0.0
 integral_x, integral_y = 0.0, 0.0
 motor_on = 0
 error_x = 0.0
 error_y = 0.0
 desired_theta_x = 0
 desired_theta_y = 0
 prev_dpad_up = 0
 prev_dpad_down = 0
 prev_dpad_right = 0
 prev_dpad_left = 0

 while True:
 time.sleep(DT)
 t_now = time.time() - t_start # Elapsed time

16

 i += 1

 try:
 # retreive dictionary of button press signals from handler
 bt_signals = controller.get_signals()

 shoulder_L1 = bt_signals["shoulder_L1"]

 if shoulder_L1 == 1: # Rising edge detection
 motor_on += 1

 # PID Tuning - DPad
 # Previous button states for edge detection
 prev_dpad_up = 0
 prev_dpad_down = 0
 prev_dpad_right = 0
 prev_dpad_left = 0
 if (motor_on >= 1):#Calculate Theta Error
 error_x = desired_theta_x - theta_x
 integral_x += error_x
 integral_y += error_y
 # Debouncing
 last_gain_change_time = 0
 GAIN_CHANGE_COOLDOWN = 0.12 # 120ms between changes

 # Gain selection index: 0=Kp, 1=Ki, 2=Kd
 gain_sel = 0

 # Increment amounts for each gain type
 GAIN_INC = {0: 0.1, 1: 0.01, 2: 0.01}
 # Kp↑ Ki↑ Kd↑

 # Read D-pad button states (every loop iteration at 200 Hz)
 dpad_up = bt_signals["dir_U"] # 0 or 1
 dpad_down = bt_signals["dir_D"] # 0 or 1
 dpad_right = bt_signals["dir_R"] # 0 or 1
 dpad_left = bt_signals["dir_L"] # 0 or 1`

 # LEFT button: cycle backward through gains
 if dpad_left == 1 and prev_dpad_left == 0: # Rising edge
detection
 gain_sel = (gain_sel - 1) % 3 # P←I←D←P (wraps around)
 selection_changed = True
 last_gain_change_time = t_now

 # RIGHT button: cycle forward through gains
 elif dpad_right == 1 and prev_dpad_right == 0:
 gain_sel = (gain_sel + 1) % 3 # P→I→D→P (wraps around)
 selection_changed = True
 last_gain_change_time = t_now

 # UP button: INCREASE selected gain

17

 elif dpad_up == 1 and prev_dpad_up == 0:
 inc = GAIN_INC.get(gain_sel, 0.01) # Get increment size
 if gain_sel == 0: # Kp selected
 Kp += inc # Increase by 0.1
 #Kp += inc
 elif gain_sel == 1: # Ki selected
 Ki += inc # Increase by 0.01
 #Ki += inc
 elif gain_sel == 2: # Kd selected
 Kd += inc # Increase by 0.01
 #Kd += inc
 gain_changed = True
 last_gain_change_time = t_now

 # DOWN button: DECREASE selected gain
 elif dpad_down == 1 and prev_dpad_down == 0:
 inc = GAIN_INC.get(gain_sel, 0.01) # Get increment size
 if gain_sel == 0: # Kp selected
 Kp -= inc # Increase by 0.1
 #Kp -= inc
 elif gain_sel == 1: # Ki selected
 Ki -= inc # Increase by 0.01
 #Ki -= inc
 elif gain_sel == 2: # Kd selected
 Kd -= inc # Increase by 0.01
 #Kd -= inc
 gain_changed = True
 last_gain_change_time = t_now

 # parse out individual buttons you want data from
 js_R_x = bt_signals["js_R_x"] # steering bot (XY) with js_R
 js_R_y = bt_signals["js_R_y"]

 trigger_L2 = bt_signals["trigger_L2"] # spinning bot (Z) with
L2/R2 triggers
 trigger_R2 = bt_signals["trigger_R2"]

 # Raw IMU Orientation
 theta_x_raw = msg.imu_angles_rpy[0] - theta_x_0
 theta_y_raw = msg.imu_angles_rpy[1] - theta_y_0
 theta_z_raw = msg.imu_angles_rpy[2] - theta_z_0

 # Filtered IMU Data
 theta_x = apply_deadzone(theta_x_raw, IMU_DEADZONE)
 theta_y = apply_deadzone(theta_y_raw, IMU_DEADZONE)
 theta_z = apply_deadzone(theta_z_raw, IMU_DEADZONE)

 #Calculate Theta Error
 error_x = desired_theta - theta_x
 print("error_x: ", error_x)
 print("\n")
 error_y = desired_theta - theta_y

18

 print("error_x: ", error_x)
 print("\n")

 integral_x += error_x
 integral_y += error_y

 # Encoder ticks 1, 2, and 3
 enc_pos_1 = msg.enc_ticks[0] - enc_pos_1_start
 enc_pos_2 = msg.enc_ticks[1] - enc_pos_2_start
 enc_pos_3 = msg.enc_ticks[2] - enc_pos_3_start

 # Change in ticks
 enc_dtick_1 = msg.enc_delta_ticks[0]
 enc_dtick_2 = msg.enc_delta_ticks[1]
 enc_dtick_3 = msg.enc_delta_ticks[2]

 #Change in time (microseconds)
 enc_dt = msg.enc_delta_time

 # Calculate motor angles from encoder ticks
 # Wheel Rotation Angles (input)
 psi_1 = calc_enc2rad(enc_pos_1)
 psi_2 = calc_enc2rad(enc_pos_2)
 psi_3 = calc_enc2rad(enc_pos_3)
 print('Psi1: ', psi_1, 'Psi2: ', psi_2, 'Psi3: ', psi_3)

 # Wheel Angular Velocities
 dpsi_1 = calc_enc2rad(1e6*(enc_dtick_1/enc_dt))
 dpsi_2 = calc_enc2rad(1e6*(enc_dtick_2/enc_dt))
 dpsi_3 = calc_enc2rad(1e6*(enc_dtick_3/enc_dt))
 print('dPsi1: ', dpsi_1, 'dPsi2: ', dpsi_2, 'dPsi3: ', dpsi_3)

 # Calculate ball's roll and translation through kinematic
conversions of wheel data
 # Ball Angular Position
 phi_x, phi_y, phi_z = calc_kinematic_conv(psi_1, psi_2, psi_3)

 # Ball Angular Velocity
 dphi_x, dphi_y, dphi_z =
calc_kinematic_conv(dpsi_1,dpsi_2,dpsi_3)

 # Calculate the desired x,y,z torque commands
 # LOW PASS FILTER ON THE D TERM
 Ty = Kp * error_x + Kd*(error_x - prev_error_x)/DT +
Ki*integral_x*DT

 Kp_x = Kp*error_y
 Kd_x = Kd*(error_y - prev_error_y)/DT
 Ki_x = Ki*integral_y*DT
 Tx = Kp_x + Kd_x + Ki_x
 #Tx = Kp * error_y + Kd*(error_y - prev_error_y)/DT +
Ki*integral_y*DT

19

 Tz = 0

 # Calculate motor effort/commands from desired Tx,Ty,Tz motion
 u1, u2, u3 = calc_torque_conv(Tx,Ty,Tz)
 u1 = func_clip(u1,-PWM_MAX,PWM_MAX)

 # Set the Previous Error
 prev_error_x = error_x
 prev_error_y = error_y

 # Send individual motor commands
 u1 = func_clip(u1,-PWM_MAX,PWM_MAX)
 u2 = func_clip(u2,-PWM_MAX,PWM_MAX)
 u3 = func_clip(u3,-PWM_MAX,PWM_MAX)
 cmd_utime = int(time.time() * 1e6)
 command.utime = cmd_utime
 if (motor_on >= 1):
 command.pwm[0] = -u1
 command.pwm[1] = -u2
 command.pwm[2] = -u3
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 # Store data in data logger
 data = [i, t_now, phi_x, phi_y]
 dl.appendData(data)

 # Print out data in terminal
 # TODO: [IF DESIRED]: Update for what info you want to see in
terminal (note: this is only printed data, not logged!)
 print(
 f"theta_x: {theta_x} | theta_y: {theta_y} | theta_z:
{theta_z} |"
)

 # Emergency Stop with Triangle Button
 emergency_stop = bt_signals["but_tri"]
 if emergency_stop == 1:
 # Immediately stop all motors
 command.pwm = [0.0, 0.0, 0.0]
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0

 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 print("\n" + "!"*80)
 print("!!! EMERGENCY STOP ACTIVATED !!!")
 print("!!! Triggered by: TOUCHPAD PRESS !!!")
 print("!"*80)
 print("\nAll motors stopped. Exiting control loop
safely...")
 print("System halted.\n")

20

 # Exit the control loop
 break # Exits the while True loop

 # Reset the IMU using Shoulder_R1
 shoulder_R1 = bt_signals["shoulder_R1"]
 if shoulder_R1 == 1:
 theta_x_0 = msg.imu_angles_rpy[0] # Capture NEW reference
pitch
 theta_y_0 = msg.imu_angles_rpy[1] # Capture NEW reference
pitch
 theta_z_0 = msg.imu_angles_rpy[2] # Capture NEW reference
pitch

 except KeyError:
 print("Waiting for sensor data...")

 except KeyboardInterrupt:
 print("\nKeyboard interrupt received. Stopping motors...")
 # Emergency stop
 command = mbot_motor_pwm_t()
 command.utime = int(time.time() * 1e6)
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 finally:
 # Save/log data
 print(f"Saving data as {filename}...")
 dl.writeOut() # Write logged data to the file
 # Stop the listener thread
 listening = False
 print("Stopping LCM listener...")
 listener_thread.join(timeout=1) # Wait up to 1 second for thread to
finish
 # Stop Bluetooth thread
 controller_thread.join(timeout=1) # Wait up to 1 second for thread to
finish
 controller.on_options_press()
 # Stop motors
 print("Shutting down motors...\n")
 command = mbot_motor_pwm_t()
 command.utime = int(time.time() * 1e6)
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

if __name__ == "__main__":
 main()

21

Extra IMU callibration stuff
#def wait_for_feedback(timeout=3.0):
 # t0 = time.time()
 # while time.time() - t0 < timeout:
 # got at least one message?
 # if hasattr(msg, "imu_angles_rpy") and len(msg.imu_angles_rpy) == 3:
 # return True
 # time.sleep(0.01)
 #return False

#def calibrate_imu(duration=1.5):
 # print(f"[CAL] Hold robot still ~{duration}s to calibrate IMU zero...")
 # xs, ys, zs = [], [], []
 # t0 = time.time()
 #while time.time() - t0 < duration:
 # xs.append(msg.imu_angles_rpy[0])
 # ys.append(msg.imu_angles_rpy[1])
 #zs.append(msg.imu_angles_rpy[2])
 #time.sleep(0.005) # ~200 Hz
 #x0 = float(np.mean(xs))
 #y0 = float(np.mean(ys))
 #z0 = float(np.mean(zs))
 #print(f"[CAL] Offsets -> theta_x_0={x0:.4f}, theta_y_0={y0:.4f},
theta_z_0={z0:.4f}")
 #return x0, y0, z0

File 2: Steering.py
"""
General framework for ball-bot control for students to update as desired.
You may wish to make multiple versions of this file to run your ball-bot in
different modes!

struct mbot_balbot_feedback_t
{
 int64_t utime;
 int32_t enc_ticks[3]; // absolute postional ticks
 int32_t enc_delta_ticks[3]; // number of ticks since last step
 int32_t enc_delta_time; // [usec]
 float imu_angles_rpy[3]; // [radian]
 float volts[4]; // volts
}

"""

import time
import lcm
import threading
import numpy as np
from mbot_lcm_msgs.mbot_motor_pwm_t import mbot_motor_pwm_t
from mbot_lcm_msgs.mbot_balbot_feedback_t import mbot_balbot_feedback_t

22

from DataLogger3 import dataLogger
from ps4_controller_api import PS4InputHandler

Constants for the control loop
FREQ = 200 # Frequency of control loop [Hz]
DT = 1 / FREQ # Time step for each iteration [sec]
PWM_MAX = 0.98 # Max motor signal for full accel/decel of motor test (keep
between 0 and 1)
N_GEARBOX = 70 # Motor gearbox ratio
N_ENC = 64 # Ticks per revolution of encoder
R_W = 0.048 # Radii of omni-wheels [m]
R_K = 0.121 # Radius of basketball [m]
IMU_DEADZONE = np.radians(.3) # 0.5 degrees in radians ≈ 0.00873 rad

Steering constants
THETA_MAX = np.radians(3)
ALPHA_THETA = 0.005
Tz_scale = 0.4

Global flags to control the listening thread & msg data
listening = False
msg = mbot_balbot_feedback_t()
last_time = 0
last_seen = {"MBOT_BALBOT_FEEDBACK": 0}

def feedback_handler(channel, data):
 """Callback function to handle received mbot_balbot_feedback_t messages"""
 global msg
 global last_seen
 global last_time
 last_time = time.time()
 last_seen[channel] = time.time()
 msg = mbot_balbot_feedback_t.decode(data)

#Filtering
def apply_deadzone(x, deadzone):
 """
 Apply a deadzone filter to sensor readings.
 Values within ±deadzone are set to zero to filter out noise.
 This prevents constant small corrections due to sensor noise.
 """
 if abs(x) < deadzone:
 return 0.0
 return x

def lcm_listener(lc):
 """Function to continuously listen for LCM messages in a separate thread"""
 global listening
 while listening:
 try:

23

 lc.handle_timeout(100) # 100ms timeout
 if time.time() - last_time > 2.0:
 print("LCM Publisher seems inactive...")
 elif time.time() - last_seen["MBOT_BALBOT_FEEDBACK"] > 2.0:
 print("LCM MBOT_BALBOT_FEEDBACK node seems inactive...")
 except Exception as e:
 print(f"LCM listening error: {e}")
 break

Motor encoder ticks to wheel angle (radians)
def calc_enc2rad(ticks):
 rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX)
 return rad

Calculate motor torques T1, T2, T3 from Tx, Ty, Tz
def calc_torque_conv(Tx,Ty,Tz):
 u1 = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty)
 u2 = (1.0/3.0)*(Tz + np.sqrt(2)*(-1.0*np.sqrt(3)*Tx + Ty))
 u3 = (1.0/3.0)*(Tz + np.sqrt(2)*(np.sqrt(3)*Tx + Ty))

 return u1, u2, u3

Calculate ball angular position from encoder odometry
def calc_kinematic_conv(psi1,psi2,psi3):
 phix = np.sqrt(2.0/3.0) * (R_W/R_K) * (psi2 - psi3)
 phiy = np.sqrt(2)/3.0 * (R_W/R_K) * (-2 * psi1 + psi2 + psi3)
 phiz = np.sqrt(2)/3.0 * (R_W/R_K) * (psi1 + psi2 + psi3)

 return phix, phiy, phiz

def func_clip(x,lim_lo,lim_hi):
 # A function to clip values that exceed a threshold [lim_lo,lim_hi]
 if x > lim_hi:
 x = lim_hi
 elif x < lim_lo:
 x = lim_lo
 return x

def main():
 # === Data Logging Initialization ===
 trial_num = int(input("Test Number? "))
 filename = f"steering_control_{trial_num}.txt"
 dl = dataLogger(filename)

 # === LCM Initialization ===
 global listening
 global msg
 lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=0")
 subscription = lc.subscribe("MBOT_BALBOT_FEEDBACK", feedback_handler)

 listening = True

24

 listener_thread = threading.Thread(target=lcm_listener, args=(lc,),
daemon=True)
 listener_thread.start()
 print("Started continuous LCM listener...")

 # Starting encoder reference
 enc_pos_1_start = msg.enc_ticks[0]
 enc_pos_2_start = msg.enc_ticks[1]
 enc_pos_3_start = msg.enc_ticks[2]

 # === Controller Initialization ===
 controller = PS4InputHandler(interface="/dev/input/js0",
 connecting_using_ds4drv=False)
 controller_thread = threading.Thread(target=controller.listen, args=(10,))
 controller_thread.daemon = True
 controller_thread.start()
 print("PS4 Controller is active...")

 try:
 command = mbot_motor_pwm_t()

 # === Main Control Loop ===
 print("Starting balance + lean-steering control loop...")
 time.sleep(0.5)

 # Data header
 data_header = [
 "i t_now Tx_total Ty_total Tz_total "
 "psi_1 psi_2 psi_3 dpsi_1 dpsi_2 dpsi_3 "
 "phi_x phi_y phi_z dphi_x dphi_y dphi_z "
 "theta_x theta_y theta_z"
]
 dl.appendData(data_header)

 i = 0
 t_start = time.time()
 t_now = 0.0

 enc_pos_1_start = msg.enc_ticks[0]
 enc_pos_2_start = msg.enc_ticks[1]
 enc_pos_3_start = msg.enc_ticks[2]

 # Initialize motor commands
 u1 = u2 = u3 = 0.0

 # Starting IMU orientation (zero reference)
 theta_x_0 = msg.imu_angles_rpy[0]
 theta_y_0 = msg.imu_angles_rpy[1]
 theta_z_0 = msg.imu_angles_rpy[2]

 # Desired lean for balance loop
 theta_d_x = 0.0

25

 theta_d_y = 0.0

 # Balance PID gains and error
 Kp_theta = 13.0
 Ki_theta = 12.0
 Kd_theta = 0.12

 err_theta_x_prev = 0.0
 err_theta_y_prev = 0.0
 int_theta_x = 0.0
 int_theta_y = 0.0

 # Previous ball angles
 phi_x_prev = 0.0
 phi_y_prev = 0.0
 phi_z_prev = 0.0

 # Motor enable flag
 motor_on = 0

 # D-pad gain tuning state
 prev_dpad_up = 0
 prev_dpad_down = 0
 prev_dpad_right = 0
 prev_dpad_left = 0
 gain_sel = 0 # 0 = Kp_theta, 1 = Ki_theta, 2 = Kd_theta
 last_gain_change_time = 0.0
 GAIN_CHANGE_COOLDOWN = 0.12
 GAIN_INC = {0: 0.1, 1: 0.01, 2: 0.01}

 while True:
 time.sleep(DT)
 t_now = time.time() - t_start
 i += 1

 try:
 # Read sensors
 bt_signals = controller.get_signals()

 # Motor enable
 shoulder_L1 = bt_signals["shoulder_L1"]
 if shoulder_L1 == 1:
 motor_on += 1

 # Joystick and triggers
 js_R_x = bt_signals["js_R_x"]
 js_R_y = bt_signals["js_R_y"]
 trigger_L2 = bt_signals["trigger_L2"]
 trigger_R2 = bt_signals["trigger_R2"]

 # Raw IMU orientation relative to starting pose
 theta_x_raw = msg.imu_angles_rpy[0] - theta_x_0

26

 theta_y_raw = msg.imu_angles_rpy[1] - theta_y_0
 theta_z_raw = msg.imu_angles_rpy[2] - theta_z_0

 # Deadzone filtering
 theta_x = apply_deadzone(theta_x_raw, IMU_DEADZONE)
 theta_y = apply_deadzone(theta_y_raw, IMU_DEADZONE)
 theta_z = apply_deadzone(theta_z_raw, IMU_DEADZONE)

 # Encoders
 enc_pos_1 = msg.enc_ticks[0] - enc_pos_1_start
 enc_pos_2 = msg.enc_ticks[1] - enc_pos_2_start
 enc_pos_3 = msg.enc_ticks[2] - enc_pos_3_start

 enc_dtick_1 = msg.enc_delta_ticks[0]
 enc_dtick_2 = msg.enc_delta_ticks[1]
 enc_dtick_3 = msg.enc_delta_ticks[2]
 enc_dt = msg.enc_delta_time # [usec]

 # Wheel angles
 psi_1 = calc_enc2rad(enc_pos_1)
 psi_2 = calc_enc2rad(enc_pos_2)
 psi_3 = calc_enc2rad(enc_pos_3)

 # Wheel angular velocities
 if enc_dt > 0:
 dpsi_1 = calc_enc2rad(1e6 * (enc_dtick_1 / enc_dt))
 dpsi_2 = calc_enc2rad(1e6 * (enc_dtick_2 / enc_dt))
 dpsi_3 = calc_enc2rad(1e6 * (enc_dtick_3 / enc_dt))
 else:
 dpsi_1 = dpsi_2 = dpsi_3 = 0.0

 # Kinematic conversion: wheel angles -> ball angles
 phi_x, phi_y, phi_z = calc_kinematic_conv(psi_1, psi_2, psi_3)

 # Ball angles -> angular velocities
 dphi_x = (phi_x - phi_x_prev) / DT
 dphi_y = (phi_y - phi_y_prev) / DT
 dphi_z = (phi_z - phi_z_prev) / DT

 phi_x_prev = phi_x
 phi_y_prev = phi_y
 phi_z_prev = phi_z

 # Joystick -> lean reference for steering
 # Stick right -> lean right (theta_d_x)
 # Stick forward -> lean forward (theta_d_y)
 theta_cmd_x = js_R_x * THETA_MAX
 theta_cmd_y = -js_R_y * THETA_MAX
 # Filter/smooth movement of setpoint
 theta_d_x += ALPHA_THETA * (theta_cmd_x - theta_d_x)
 theta_d_y += ALPHA_THETA * (theta_cmd_y - theta_d_y)

27

 # Balance loop (around lean setpoint)
 err_theta_x = theta_d_x - theta_x
 err_theta_y = theta_d_y - theta_y

 int_theta_x += err_theta_x * DT
 int_theta_y += err_theta_y * DT

 d_err_theta_x = (err_theta_x - err_theta_x_prev) / DT
 d_err_theta_y = (err_theta_y - err_theta_y_prev) / DT

 # Map lean error to torques
 Ty_balance = (Kp_theta * err_theta_x +
 Ki_theta * int_theta_x +
 Kd_theta * d_err_theta_x)

 Tx_balance = (Kp_theta * err_theta_y +
 Ki_theta * int_theta_y +
 Kd_theta * d_err_theta_y)

 err_theta_x_prev = err_theta_x
 err_theta_y_prev = err_theta_y

 # Z rotation/steering
 Tx_steering = 0.0
 Ty_steering = 0.0
 Tz_steering = (trigger_R2 - trigger_L2) * Tz_scale

 # D-pad gain tuning
 dpad_up = bt_signals["dir_U"]
 dpad_down = bt_signals["dir_D"]
 dpad_right = bt_signals["dir_R"]
 dpad_left = bt_signals["dir_L"]

 if t_now - last_gain_change_time > GAIN_CHANGE_COOLDOWN:
 if dpad_left == 1 and prev_dpad_left == 0:
 gain_sel = (gain_sel - 1) % 3
 last_gain_change_time = t_now

 elif dpad_right == 1 and prev_dpad_right == 0:
 gain_sel = (gain_sel + 1) % 3
 last_gain_change_time = t_now

 elif dpad_up == 1 and prev_dpad_up == 0:
 inc = GAIN_INC.get(gain_sel, 0.01)
 if gain_sel == 0:
 Kp_theta += inc
 elif gain_sel == 1:
 Ki_theta += inc
 elif gain_sel == 2:
 Kd_theta += inc
 last_gain_change_time = t_now

28

 elif dpad_down == 1 and prev_dpad_down == 0:
 inc = GAIN_INC.get(gain_sel, 0.01)
 if gain_sel == 0:
 Kp_theta -= inc
 elif gain_sel == 1:
 Ki_theta -= inc
 elif gain_sel == 2:
 Kd_theta -= inc
 last_gain_change_time = t_now

 prev_dpad_up = dpad_up
 prev_dpad_down = dpad_down
 prev_dpad_right = dpad_right
 prev_dpad_left = dpad_left

 # Combine outputs
 Tx_total = Tx_balance + Tx_steering
 Ty_total = Ty_balance + Ty_steering
 Tz_total = Tz_steering

 # Tx,Ty,Tz -> u1,u2,u3
 u1, u2, u3 = calc_torque_conv(Tx_total, Ty_total, Tz_total)

 # Clip to PWM limits
 u1 = func_clip(u1, -PWM_MAX, PWM_MAX)
 u2 = func_clip(u2, -PWM_MAX, PWM_MAX)
 u3 = func_clip(u3, -PWM_MAX, PWM_MAX)

 # Send individual motor commands
 cmd_utime = int(time.time() * 1e6)
 command.utime = cmd_utime
 if (motor_on >= 1):
 command.pwm[0] = -u1
 command.pwm[1] = -u2
 command.pwm[2] = -u3
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 # Store data in data logger
 data = [i, t_now, phi_x, phi_y]
 dl.appendData(data)

 # Print out data in terminal
 # TODO: [IF DESIRED]: Update for what info you want to see in
terminal (note: this is only printed data, not logged!)
 print(
 f"theta_x: {theta_x} | theta_y: {theta_y} | theta_z:
{theta_z} |"
)

 # Emergency stop

29

 emergency_stop = bt_signals["but_tri"]
 if emergency_stop == 1:
 # Immediately stop all motors
 command.pwm = [0.0, 0.0, 0.0]
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0

 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 print("\n" + "!"*80)
 print("!!! EMERGENCY STOP ACTIVATED !!!")
 print("!!! Triggered by: TOUCHPAD PRESS !!!")
 print("!"*80)
 print("\nAll motors stopped. Exiting control loop
safely...")
 print("System halted.\n")

 # Exit the control loop
 break # Exits the while True loop

 # Zero the IMU
 shoulder_R1 = bt_signals["shoulder_R1"]
 if shoulder_R1 == 1:
 theta_x_0 = msg.imu_angles_rpy[0]
 theta_y_0 = msg.imu_angles_rpy[1]
 theta_z_0 = msg.imu_angles_rpy[2]

 except KeyError:
 print("Waiting for sensor data...")

 except KeyboardInterrupt:
 print("\nKeyboard interrupt received. Stopping motors...")
 # Emergency stop
 command = mbot_motor_pwm_t()
 command.utime = int(time.time() * 1e6)
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

 finally:
 # Save/log data
 print(f"Saving data as {filename}...")
 dl.writeOut() # Write logged data to the file
 # Stop the listener thread
 listening = False
 print("Stopping LCM listener...")
 listener_thread.join(timeout=1) # Wait up to 1 second for thread to
finish
 # Stop Bluetooth thread

30

 controller_thread.join(timeout=1) # Wait up to 1 second for thread to
finish
 controller.on_options_press()
 # Stop motors
 print("Shutting down motors...\n")
 command = mbot_motor_pwm_t()
 command.utime = int(time.time() * 1e6)
 command.pwm[0] = 0.0
 command.pwm[1] = 0.0
 command.pwm[2] = 0.0
 lc.publish("MBOT_MOTOR_PWM_CMD", command.encode())

if __name__ == "__main__":
 main()

31

	ROB311: Ballbot Final Report
	Introduction
	Methodology
	Device Communication & Information Transfer

	
	Our Ballbot uses two coupled feedback control loops, one for balancing and one for steering. Both controls use the control architecture articulated in the above section. The Balance Controller is the primary loop that is always active, whereas the steering control modifies the balance behaved to produce controlled motion at a desired lean angle. The balance controller works by stabilizing the robot's lean angles in the X and Y axes. The onboard IMU measures these angles, and the balance controller computes the error between robot position and desired angle. Our tuned PID values as discussed in the next section allowed us to send commands back to the motors on our robot, and maintain our balance. Our steering controller allows both translational and rotational motion while maintaining our robot’s balance. Our desired steering location is determined from user joystick input on a PS4 controller, and converted to a desired angle. This steering PID loop now controls our robots desire to lean in that direction, with
	
	PID Tuning
	Results
	IMU vs Encoder Spin Speeds
	Balance Control

	Conclusion & Future Work
	Appendix A - Ballbot Figures and Terms
	Appendix B - Additional Figures
	Appendix C - Python Code
	File 1: PID_Controller.py
	File 2: Steering.py

