ROB311: Ballbot Final Report

S =

RO,

= -
&« , 0% 377
T2 4

Authors: James Oosterhouse, Caitlin Roberts, and Wyatt Wrubel

Team A10

December 16, 2025

Introduction

This report describes our Ballbot system created for the University of Michigan Robotics class, ROB311: How to
Build Robots and Make Them Move. Our robot is based off of the MBot ecosystem and is optimized to balance and
steer while on top of a standard basketball. We designed mechanical aspects of our robot in Onshape and we used
PID controllers to create the control structure. Our robot used sensor input from an on-board IMU as well as motor
encoders. Our goal was to create a Ballbot that can compete and win our in-class competition, which required
long-term balancing and steering algorithms to be effective and stable. We were proud that our ballbot took 3rd
place in our in-class competition and was able to consistently balance despite its constraints.

Methodology

Device Communication & Information Transfer

USB Serial

PS4 Controller
(User Setpoints)

s (motor duty cycles, mode flags) jﬁ

Microcontroller (Pico)

IMU (Roll / Pitch / Yaw)

l

Raspberry Pi

0.005's)

200 Hz Control Loop (DT =

Controllers + Data Logging < \

Motor Encoders.

UsB Serial
(timestamp, enc ticks, IMU angles, diagnostics)

Low-level I/0

—

!

Motor Drivers

!

Motors / Ball

Figure 1. Ballbot System Architecture

Our Ballbot used a two computer control stack consisting of a Pico microcontroller that handles all of the low-level
processing, and a Raspberry Pi for high-level control. This separation of boards allows for sensor data and motor
actuation to be handled much faster from the computationally heavy control logic. The Pico interfaces directly with
our onboard sensors, including the IMU and the motor encoders. During each cycle, the Pico receives data from
them and sends them back to the Raspberry Pi. The Pico also receives commands from the Raspberry Pi, and sends
those signals right to the motor drivers. The Raspberry Pi runs the main control code at 200 Hz. It takes all of the
data from the Pico, evaluates it against the control algorithms, and generates the proper motor outputs. Both
directions of this communication happen through USB serial. When needed, our PS4 controller also sends feedback
to the Raspberry Pi through bluetooth. This information is then used in our control algorithms.

Controllers & Actuation

Balance Efforts ¢
e (Tx,bal, Ty,bal)

PID Controller

MU
Motors + Ball >
otors *+ Bal Measured Angles Bx, By

7

\% Torque / Motor Mapping Desired Lean Angle

6_des = 0 (upright)

Error Computation
e[k] = 8_des[k] - B[k]

Figure 2. Ballbot Balance Control Loop

Motors + Ball

1,92,93) > (%, 9y,
02)

—

T

Motor | PWM Mapping

nnnnnnnnnnnnn
Measured Angles (u1,
w2,p3)

PS4 Controlle Inputs:

Rate Error
el = gdesik] - 9k

Figure 3. Ballbot Steering Control Loop

Our Ballbot uses two coupled feedback control loops, one for balancing and one for steering. Both controls use the
control architecture articulated in the above section. The Balance Controller is the primary loop that is always active,
whereas the steering control modifies the balance behaved to produce controlled motion at a desired lean angle. The
balance controller works by stabilizing the robot's lean angles in the X and Y axes. The onboard IMU measures
these angles, and the balance controller computes the error between robot position and desired angle. Our tuned PID
values as discussed in the next section allowed us to send commands back to the motors on our robot, and maintain
our balance. Our steering controller allows both translational and rotational motion while maintaining our robot’s
balance. Our desired steering location is determined from user joystick input on a PS4 controller, and converted to a
desired angle. This steering PID loop now controls our robots desire to lean in that direction, with smoothing in
place to both lean to and from that angle. The balance and steering control outputs are summed together to form the
total control effort for our ballbot, outputting torque commands to our motors.

PID Tuning

For our final PID values, we spent many hours meticulously honing them in until we found the optimal functionality
for our own bot. Our final values were: K, = 13, K; = 12, K4 = 0.1. We started by tuning just K, with no other gain
involved. Initially adjusting the value in large amounts proved beneficial because once we saw our bot oscillating on
top of the ball, we knew we’d gone too high. From there we were able to reduce the value at smaller increments until
we landed on 13. With just K,,, our bot was balancing considerably better than the system without any error
correction, but still needed some work.

Thus, we decided to introduce K, next. To our surprise, we consistently found that K, was making a negative impact
on balance performance, so we wanted to minimize it to a point where our bot wasn’t too jumpy but could still
respond to quick changes in movement. This led to us settling at a value of 0.1, since anything above that was too
reactive and anything below didn’t assist as much as possible. Even with both of these gains our bot still couldn’t
hold a single position for very long, and the longer it balanced the worse it performed.

This led us to introducing a K; term to counteract accumulated error in the system. We started off with incremental
small values (increase by 0.02 with K; < 1); however, this made little to no positive impact on the balancing, so we
decided to increase K; by whole numbers to see what happens. This made a massive improvement to our system and
seemed to be the thing we were missing all along. In search of finding the best K;, we pushed the value to 50, which
proved to be much too far. We then decreased to 30, to 20, to the teens, then we settled at 12. Before K; was
involved, our bot would sloppily balance for about 15 seconds, then lean one way and never recover. However, the
introduction of K; solved both of these issues. The motors now actuate on a very small scale to keep the ball in
virtually one spot on the floor and even if the bot does lean, it can recover and remount on top of the ball.

Our Best Practices for Control

We attempted to implement several best practices to increase the accuracy of our control algorithm but ultimately
ended up using only two of them: dead-band of 0.3° around 0° on the IMU and low-pass filter of controller steering
commands. The dead-band essentially removes small amounts of noise when the bot is perfectly mounted on top of
the ball. This worked very well because it allows for less accumulation of error and less unnecessary small motor
actuation, which we noticed during testing. The low-pass filter acts as a mode of smoothing the steering commands
that come from the joystick. A human is inherently bad at making precise, continuous movements of their thumb on
a joystick, resulting in jerky inputs which are devastating to the adjustment of the ballbot’s reference angle. This
filter ensures that quick movements of the joystick won’t throw the bot off of the ball, but instead correlate to a
smooth change in reference angle, enabling effective steering.

We also attempted to dead-band the joystick and limit integral gain windup. Though these are good ideas in theory,
we ended up having issues with both. Dead-banding the joystick in a small amount should’ve just removed any
physical stick drift in the controller when at rest, but it ended up rendering our steering algorithm useless. In other

words, motion of the joystick wouldn’t correlate to any physical steering of the ballbot. Additionally, our idea for
limiting integral gain windup came from the fact that K; increased significantly whenever the bot and ball would
start to “run away,” always resulting in the bot falling off. We thought that if we set a limit to the max K; then it
would help the runaway situation, but it just made it even worse. This does make sense because if K; is limited when
leaning, then the bot’s control efforts are less than they could be, resulting in inefficient lean recovery.

Results

IMU vs Encoder Spin Speeds

In order to collect data comparing IMU measurements to encoder calculations of spin speed (di,), we controlled the
ball bot with 4 different duty cycles. Each cycle was 3 seconds, with Tz =[0.75, 1.5, 2.25, 3] for each of the four
cycles, respectively. We controlled the torque output for three seconds to be able to trim noisy data during
acceleration between duty cycles.

Z-axis Angular Velocity: Linear Fits with Error Bars

7z
-,
.
8- E 1
-
-
-
.
7 e 7
e
-
7’
= -
3 7’
Eer g2 :
n .
3 .
-
% e
- -
s ° . -
= e -
[e -
@ i - [J
= 4 _-"
2 pd -
< -, - -
-’ - L] PR
- -
3 . s _ - - m
L -
Ll- - § d9,(MU)Data
s _ =* § do, (Encoder) Data
L - R
L - ,= - = IMU fit: w=1.21 TZ+1.19(RA2=0.838)
- N
L 14 — — Encoder fit: w = 2.68 Tz +-0.07 (RA? = 0.999)
1 I I I | |

05 1 15 2 25 3
Applied Torque TZ [Nm]

Figure 4. Ballbot IMU Measurements vs Encoder Calculations

While varying Tz for each cycle, we recorded IMU angles (¥, ¥y, ¢,) and encoder angular velocities (dg;, dp,, dg,)
from the ballbot datalogger. The orientation angles (9,, 9,, 9,) are obtained from the ballbot’s IMU measurements.
Each angle is relative to the initial reference value to express the ballbot’s orientation relative to the starting pose. To
reduce the effect of sensor noise and prevent small, unnecessary corrections, we apply a deadzone filter to each
angle. The deadzone filter clips any angle less than the deadzone (0.3°) to zero, while values that exceed this
threshold are unchanged. This filtering step improves the stability of control and allows for smoother angle error
correction when balancing and steering the ball-bot.

The ballbot encoder data measures the position of each wheel on the ballbot. The raw encoder counts are converted
into wheel rotation angles (v, 1, ,;) in radians. Wheel angular velocities (dvy,, dy,, dy;) are computed by
differentiating psil23 with respect to time. We then map the wheel angular velocity to the ball’s motion with a
kinematic conversion model. The ball’s angular velocities (dg,, dg,, dp,) as seen in Figure 4 capture the rotational
motion of the ball.

Once we obtained the IMU and encoded angular velocities at four different Tz duty cycles we used Matlab to
present Figure 4, a comparison of the Z-axis angular velocity measured by the IMU and estimated from the wheel
encoders. For each Tz value, we extracted a smaller time window without ballbot accelerations, and calculated the
mean and standard deviations for di#,and dg, .

As seen in Figure 4, the angular velocity estimated from the wheel encoders is consistently higher than the angular
velocity measured by the IMU. This difference can be explained by factors related to sensing, assumptions when
modeling, and interactions between the ball and the wheel. First, the encoder-based angular velocity is mapped using
a kinematic model that assumes ideal rolling conditions without slip. In reality, slip occurs, which causes the wheels
to rotate slightly faster than the ball itself, leading to higher values of dg,. Additionally, the deadzone filter that we
apply to IMU angles reduces sensitivity to small rotations that are close to zero. Although this is helpful for balance
control, it may contribute to a lower average angular velocity from the IMU relative to the encoder’s estimate.

Balance Control

To develop the balance controller, we tuned the PID controller based on the ballbot’s observed behaviors at different
proportional (K,), integral (K;), and derivative (K) values. The proportional term responds to the current error, the
integral term reduces steady state error, and the derivative term dampens oscillations by reacting to small changes in
error. Figure 5 shows the ballbot’s lean angle, individual PID control gains, and resulting torque output along the
x-axis for 15 seconds of balancing. For our controller, the proportional term contributes the most to the torque output
and is the most dominant component of our balance control.

Balance Control

0.02
E=)
s
Wx 0
b
K=
S
0.02 ‘
0 5 10 15
= Ti
= ime (s)
Z g4
3
E 02t
a i L[\h Uf\!\ i IJ
5 o r‘n’ﬁfﬂ; m
£ 02}
Q
8
= 5 . 15
a
Time (s)
E
<
4
L

Time (s)

Figure 5. Ball Angle, PID Control Efforts, and Total Torque for Balance

When comparing subplots two and three in Figure 5, we see that the shape of the torque plot closely matches the
shape of the proportional control term of the PID controller. This indicates that the balance control’s response is
primarily driven by the current lean angle error. In contrast, the integral and derivative terms have smaller
magnitudes overall. We theorize that this is because the integral and derivative gains work to remove different types
of error, past and future error. The integral and derivative terms serve mainly to correct for residual error and
oscillations, rather than drive the overall balance control effort.

Steering Control

When comparing our ball’s odometry to actual position, we used our steering control to drive the ballbot in a square
approximately 2m x 2m. In order to determine the robot’s odometry, we recorded the ball’s angular position (¢, and
@y) during the steering control. ¢, and ¢, are calculated based on a kinematic conversion from the wheel rotation
(Y1, ¥, ,3). The ballbot’s wheel rotation angles are determined based on encoder readings on each of the wheels.
Using the equations (1) x, = -1, * @, and (2) yi = r * @y, with r, = 0.121m (the radius of the ball) we are able to
calculate the ballbot’s odometry. Figure 6 plots the ballbot’s odometry when driving in a square.

Steering Control Odometry

151

¥, (m)

-2 -1.5 -1 0.5 0 0.5

Figure 6. Ball Odometry Driving a 2m x 2m Square

As seen in the figure, the ball’s odometry shows a lot of drift from the actual position relative to the start. This
discrepancy is due to accumulated odometry error over time. The odometry is computed entirely from wheel
encoder measurements. Any small error in the encoder readings or kinematic conversions from wheel rotations to
ball angles accumulates overtime. Minor inaccuracies can cause drift, resulting in a lopsided or skewed square, like
seen in Figure 6.

Second, the wheels can slip or have uneven contact on the surface of the ball. When steering the ballbot, especially
at square corners, slip is likely to occur on the ball, causing the measured wheel rotation to differ from the actual ball
motion. This leads to incorrect @,and ¢, values and therefore incorrect position estimates. Over the course of the
square path, these errors accumulate and produce a shape other than a perfect square. Finally, we did not implement
a position PID controller, so there was no mechanism in our ballbot to correct for odometry errors. Therefore, the
ballbot’s odometry estimate will differ from the true position of the ball.

Conclusion & Future Work

In this project, we designed, built, and tested a Ballbot that balances and steers on a standard basketball using an
IMU, motor encoders, and two PID loops for balancing and steering. We quantified performance through logged
experiments including IMU vs encoder yaw-rate comparisons, steady-state balancing plots, and a square driving test
for odometry. The results showed that encoder-based yaw-rate estimates were consistently higher than IMU
measurements, which we attribute mainly to slip and non-ideal rolling that violate kinematic assumptions, and our
balancing data showed that the proportional term dominated the control effort while the integral and derivative terms
mainly reduced residual bias and oscillations. The square driving test demonstrated significant odometry drift over
time due to accumulated encoder and modeling error and the lack of a position-level correction loop.

With more time, we would improve robustness by reducing slip sensitivity through better wheel-ball contact, adding
stronger filtering and saturation best practices in the control pipeline, and implementing mechanical changes to the
robot to overall increase its effectiveness. Some of these mechanical changes may include increased robot Center of
Mass or adding balancing fingers as seen in the ETH Zurich paper. Overall, this project was a fantastic learning
experience and we are very satisfied with the robot we developed.

Appendix A - Ballbot Figures and Terms

Figure A. Wheel Rotation Angles, Top View

Wheel Rotation Angles (', ¥, ,¥5) as calculated from motor encoder ticks. v, 1, ,; are used to calculate the ball’s
angular position (¢,, @y, @,) in the x-y-z plane. In turn, we can calculate the changes in these terms by taking the
derivative of each.

A Yk

y — z Plane

Derived for the Y-Z plane
but applicable to the X-Z
plane as well

Figure B. Position of the Ball, Side View

1, as seen in the figure, represents the position of the ball relative to its starting position (¢, = 0). As discussed in the
balance control portion of the report, the angle of the ballbot is used to drive balance control.

Overall size does not interfere with

other components

45° angle for optimal wheel contact

Holes spaced to exact baseplate
dimensions for mounting

Holes spaced to exact
motor hole locations

Figure C. CAD of Motor Mounts, Various Views

Though we were given creative liberty in designing our motor mounts, there were still requirements we had to meet
to ensure proper ball bot functionality. The mounts must: not interfere with internal bot components, ensure 45°
wheel contact with the ball, mount to the laser cut holes on the baseplate, and securely house our motors.
Satisfaction of these requirements can be found in Figure C.

Appendix B - Additional Figures

USB Serial
4 (motor duty cycles, mode flags)
\ Microcontroller (Pico)
7 -
PS4 Controller é Low-level I/O
(User Setpoints) 7
IMU (Roll / Pitch / Yaw) J’
Motor Drivers
Raspberry Pi /
200 Hz Control Loop (DT =
0.0055)) é\ Motor Encoders -/
Controllers + Data Logging
Motors / Ball
USB Serial J

(timestamp, enc ticks, IMU angles, diagnostics)

Figure 1. Ballbot System Architecture (Enlarged)

Balance Efforts
(Tx,bal , Ty,bal)

Motors + Ball

T

Torque / Motor Mapping

IMU
Measured Angles 8x, By

Desired Lean Angle
6_des = 0 (upright)

l

Figure 2. Ballbot Balance Control Loop (Enlarged)

PID Controller

Error Computation
e[k] = 6_des[k] - B[k]

10

Steering Efforts

N

Motors + Ball

T

Motor / PWM Mapping

Figure 3. Ballbot Steering Control Loop (Enlarged)

Steering PID

%

Kinematic Conversion
(91,92, $3) > (o, oy,
2)

Numerical Differentiation
(©x, 9y, 92) > (§x, $y,
$z)

)

T

Wheel Encoders
Measured Angles (1,
Y2, $3)

Setpoint Mapping

Desired Ball Rates

(px,des , gy, des,
¢z,des)

Rate Error
e@[k] = gdes[k] - [k]

i

PS4 Controller Inputs

11

Ballbot Team A10 (left to right): Wyatt Wrubel, James Oosterhouse, and Caitlin Roberts

12

Appendix C - Python Code

File 1: PID Controller.py

wun

General framework for ball-bot control for students to update as desired.
You may wish to make multiple versions of this file to run your ball-bot in
different modes!

struct mbot balbot feedback t
{

int64 t utime;

int32 t enc_ticks[3]; // absolute postional ticks
int32_t enc_delta ticks[3]; // number of ticks since last step
int32 t enc delta time; // lusec]

float imu_angles rpy[3]; // [radian]

float volts([4]; // volts

import time

import lcm

import threading

import numpy as np

from mbot lcm msgs.mbot motor pwm t import mbot motor pwm t

from mbot lcm msgs.mbot balbot feedback t import mbot balbot feedback t
from Datalogger3 import datalogger

from ps4 controller api import PS4InputHandler

Constants for the control loop

FREQ = 200 # Frequency of control loop [Hz]

DT = 1 / FREQ # Time step for each iteration [sec]

PWM MAX = 0.98 # Max motor signal for full accel/decel of motor test (keep
between 0 and 1)

N GEARBOX = 70 # Motor gearbox ratio

N ENC = 64 # Ticks per revolution of encoder

R W = 0.048 # Radii of omni-wheels [m]

R K 0.121 # Radius of basketball [m]

IMU DEADZONE = np.radians(.3) # 0.5 degrees in radians = 0.00873 rad

Global flags to control the listening thread & msg data
listening = False

msg = mbot balbot feedback t()

last time 0

last_seen = {"MBOT BALBOT FEEDBACK": 0}

def feedback handler (channel, data):
"""Callback function to handle received mbot balbot feedback t messages"""
global msg
global last seen
global last time
last _time = time.time ()

last_seen[channel] = time.time ()
msg = mbot balbot feedback t.decode (data)

#Filtering
def apply deadzone (x, deadzone):
mon
Apply a deadzone filter to sensor readings.
Values within tdeadzone are set to zero to filter out noise.
This prevents constant small corrections due to sensor noise.
mwrwan
if abs(x) < deadzone:
return 0.0
return x

def lcm_listener (lc):

"""Function to continuously listen for LCM messages in a separate thread"""

global listening
while listening:
try:
lc.handle timeout (100) # 100ms timeout
if time.time() - last time > 2.0:
print ("LCM Publisher seems inactive...")
elif time.time() - last seen["MBOT BALBOT FEEDBACK"] > 2.0:
print ("LCM MBOT BALBOT FEEDBACK node seems inactive...")
except Exception as e:
print (£"LCM listening error: {e}")
break

Motor encoder ticks to wheel angle (radians)

def calc enc2rad(ticks):
rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX)
return rad

Calculate motor torques T1l, T2, T3 from Tx, Ty, Tz
def calc torque conv(Tx,Ty,Tz):

ul = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty)
u2 = (1.0/3.0)*(Tz + np.sqgrt(2)*(-1.0*np.sqrt(3)*Tx + Ty))
u3 = (1.0/3.0)*(Tz + np.sqrt(2)* (np.sqrt(3)*Tx + Ty))

return ul, u2, u3

Calculate ball angular position from encoder odometry
def calc_kinematic conv(psil,psi2,psi3):
phix = np.sqrt(2.0/3.0) * (R W/R K) * (psi2 - psi3)
phiy = np.sqrt(2)/3.0 * (R W/R K) * (-2 * psil + psi2 + psi3)
(

2
phiz np.sqrt(2)/3.0 * (R W/R K) * (psil + psi2 + psi3)

return phix, phiy, phiz

def func clip(x,1lim lo,lim hi):

14

A function to clip values that exceed a threshold [lim lo,lim hi]
if x > 1lim hi:

x = lim hi
elif x < 1lim lo:
x = lim lo

return x

def main

) .

=== Data Logging Initialization ===

Prompt user for trial number and create a data logger
trial num = int (input ("Test Number? "))

filename = f"PID control {trial num}.txt"

dl = datalogger (filename)

4

=== LCM Messaging Initialization ===

Initialize the serial communication protocol

global listening

global msg

lc = lcm.LCM("udpm://239.255.76.67:76672ttl=0")

subscription = lc.subscribe ("MBOT BALBOT FEEDBACK", feedback handler)

Start a separate thread for reading LCM data

listening = True

listener thread = threading.Thread(target=lcm listener, args=(lc,),
daemon=True)

listener thread.start()

print ("Started continuous LCM listener...")

#print ("Waiting for first IMU message...")
#1f not wait for feedback():
print (" [WARN] No IMU feedback.")

theta x 0, theta y 0, theta z 0 = calibrate imu(duration=5)

enc_pos_1 start
enc_pos_2 start
enc_pos_3 start

msg.enc_ticks[0]
msg.enc_ticks([1]
msg.enc_ticks[2]

=== Controller Initialization ===
Create an instance of the PS4 controller handler
controller =
PS4InputHandler (interface="/dev/input/js0", connecting using ds4drv=False)
Start a separate thread to listen for controller inputs

controller thread = threading.Thread(target=controller.listen, args=(10,))
controller thread.daemon = True # Ensures the thread stops with the main
program

controller thread.start()
print ("PS4 Controller is active...")

try:

command = mbot motor pwm t ()
=== Main Control Loop ===

15

print ("Starting steering control loop...")
time.sleep(0.5)

Store variable names as header to data logged,
Matlab

for easier parsing in

TODO [IF DESIRED]: Update data header variables names to match actual

data logged (at end of loop)
data = ["1 t now phi x phi y"]
dl.appendData (data)

i =0 # Iteration counter
t_start = time.time()

t now = 0

enc_pos_1 start = msg.enc_ticks[0]
enc_pos_2 start = msg.enc_ticks[1l]
enc_pos_3 start = msg.enc_ticks[2]

Initialize Torque Commands

ul = 0
u2 = 0
u3d = 0

Starting IMU Orientation

theta x 0 = msg.imu angles rpy[O0]
theta y 0 = msg.imu_angles rpy[1l]
theta z 0 = msg.imu angles rpy[Z2]

desired theta = 0.0 # upright
Kp = 13 # Proportional gain
Between 0-15

Ki = 12 # Integral gain
Kd = .1 # Derivative gain

Starting error and integral terms

prev_error x, prev_error y = 0.0, 0.0
integral x, integral y = 0.0, 0.0
motor on = 0

error x = 0.0

error y = 0.0

desired theta x = 0
desired theta y = 0
prev_dpad up = 0

prev_dpad down = 0
prev_dpad right = 0
prev_dpad left = 0

while True:
time.sleep (DT)
t now = time.time() - t start # Elapsed time

16

try:
retreive dictionary of button press signals from handler
bt signals = controller.get signals()

shoulder L1 = bt signals["shoulder L1"]

if shoulder L1 == 1: # Rising edge detection
motor on += 1

PID Tuning - DPad

Previous button states for edge detection

prev_dpad up = 0

prev_dpad down = 0

prev_dpad right = 0

prev_dpad left = 0

if (motor on >= 1) :#Calculate Theta Error
error x = desired theta x - theta x
integral x += error x
integral y += error y

Debouncing

last gain change time = 0

GAIN CHANGE COOLDOWN = 0.12 # 120ms between changes

Gain selection index: 0=Kp, 1=Ki, 2=Kd
gain sel = 0

Increment amounts for each gain type
GAIN INC = {0: 0.1, 1: 0.01, 2: 0.01}
Kpt Ki Kd1

Read D-pad button states (every loop iteration at 200 Hz)
dpad up = bt signals["dir U"] # 0 or 1

dpad down = bt signals["dir D"] # 0 or 1
dpad right = bt signals["dir R"] # 0 or 1
dpad left = bt signals["dir L"] # 0 or 1

LEFT button: cycle backward through gains

if dpad left == 1 and prev_dpad left == 0: # Rising edge
detection
gain sel = (gain sel - 1) % 3 # P-I-D-P (wraps around)
selection changed = True
last gain change time = t now

RIGHT button: cycle forward through gains

elif dpad right == 1 and prev_dpad right == 0:
gain sel = (gain sel + 1) % 3 # P-I-D-P (wraps around)
selection_changed = True
last gain change time = t now

UP button: INCREASE selected gain

L2/R2 triggers

elif dpad up == 1 and prev_dpad up ==
inc = GAIN INC.get(gain sel, 0.01)

0:

Get increment size

if gain _sel == 0: # Kp selected

Kp += inc # Increase by 0.1
#Kp += inc

elif gain sel == 1: # Ki selected

Ki += inc # Increase by 0.01
#Ki += inc

elif gain sel == 2: # Kd selected

Kd += inc # Increase by 0.01
#Kd += inc

gain_changed = True

last gain change time = t now

DOWN button: DECREASE selected gain

elif dpad down == 1 and prev_dpad down ==

inc = GAIN INC.get(gain_sel, 0.01)

Get increment size

if gain sel == 0: # Kp selected

Kp -= inc # Increase by 0.1
#Kp -= inc

elif gain sel == 1: # Ki selected

Ki -= inc # Increase by 0.01
#Ki -= inc

elif gain sel == 2: # Kd selected

Kd -= inc # Increase by 0.01
#Kd -= inc

gain changed = True

last gain change time = t now

parse out individual buttons you want data from

js R x = bt signals["js R x"] # steering bot (XY) with js R

js R y = bt signals["js R y"]

trigger L2 = bt signals["trigger L2"]

trigger R2 bt signals["trigger R2"]
Raw IMU Orientation

theta x raw = msg.imu angles rpy[0] -
theta y raw = msg.imu_angles rpy[l] -
theta z raw

msg.imu angles rpy[2] -

Filtered IMU Data

theta x = apply deadzone (theta x raw,
theta y = apply deadzone(theta y raw,
theta z = apply deadzone(theta z raw,

#Calculate Theta Error

error x = desired theta - theta x
print ("error x: ", error x)
print ("\n")

error y = desired theta - theta y

spinning bot

theta x 0
theta y O
theta z 0

IMU DEADZONE)
IMU DEADZONE)
IMU DEADZONE)

(2)

with

18

print ("error x: ", error_ Xx)
print ("\n")

integral x += error x
integral y += error y

Encoder ticks 1, 2, and 3

enc_pos_1 = msg.enc_ticks[0] - enc pos 1 start
enc_pos 2 = msg.enc_ticks[l] - enc pos 2 start
enc_pos_3 = msg.enc_ticks[2] - enc pos 3 start

Change in ticks

enc_dtick 1 = msg.enc delta ticks[0]
enc_dtick 2 = msg.enc _delta ticks[1]
enc_dtick 3 = msg.enc_delta ticks[2]

#Change in time (microseconds)
enc_dt = msg.enc delta time

Calculate motor angles from encoder ticks
Wheel Rotation Angles (input)

psi 1 = calc_encZrad(enc_pos_ 1)
psi 2 = calc_enc2rad(enc_pos_2)
psi 3 = calc_enc2rad(enc_pos_3)

\

print('Psil: ', psi 1, 'Psi2: , psi 2, '"Psi3: ', psi 3)
Wheel Angular Velocities
dpsi 1 = calc_enc2rad(le6*(enc_dtick 1/enc dt))
dpsi 2 = calc_enc2rad(le6* (enc_dtick 2/enc dt))
dpsi 3 = calc_enc2rad(le6* (enc_dtick 3/enc dt))
print ('dpPsil: ', dpsi 1, 'dPsi2: ', dpsi 2, 'dPsi3: ', dpsi_ 3)

Calculate ball's roll and translation through kinematic
conversions of wheel data

Ball Angular Position

phi x, phi y, phi z = calc kinematic conv(psi 1, psi 2, psi 3)

Ball Angular Velocity
dphi x, dphi y, dphi z =
calc_kinematic_conv(dpsi 1,dpsi 2,dpsi_3)

Calculate the desired x,vy,z torque commands

LOW PASS FILTER ON THE D TERM

Ty = Kp * error x + Kd* (error x - prev_error x)/DT +
Ki*integral x*DT

Kp_x = Kp*error_ y
Kd x = Kd* (error y - prev _error y)/DT
Ki x = Ki*integral y*DT

Tx = Kp_ x + Kd x + Ki x
#Ix = Kp * error_y + Kd*(error y - prev _error y)/DT +
Ki*integral y*DT

Tz = 0

Calculate motor effort/commands from desired Tx,Ty,Tz motion
ul, u2, u3 = calc _torque conv(Tx,Ty,Tz)
ul = func_clip(ul,-PWM MAX, PWM MAX)

Set the Previous Error
prev_error X = error_x
prev_error y = error_y

Send individual motor commands
ul = func_clip(ul,-PWM_MAX, PWM MAX)
u2 = func_clip(u2,-PWM MAX, PWM MAX)
u3 = func_clip(u3,-PWM_MAX, PWM MAX)
cmd _utime = int(time.time() * leb6)
command.utime = cmd utime

if (motor_on >= 1):

command.pwm[0] = -ul
command.pwm[l] = -u2
command.pwm[2] = -u3

lc.publish ("MBOT MOTOR PWM CMD", command.encode ())

Store data in data logger
data = [i, t now, phi x, phi y]
dl.appendData (data)

Print out data in terminal
TODO: [IF DESIRED]: Update for what info you want to see in
terminal (note: this is only printed data, not logged!)
print(
f"theta x: {theta x} | theta y: {theta y} | theta z:

{theta z} |"
)
Emergency Stop with Triangle Button
emergency stop = bt signals["but tri"]
if emergency stop == 1:
Immediately stop all motors
command.pwm = [0.0, 0.0, 0.0]
command.pwm[0] = 0.0
command.pwm[1l] = 0.0
command.pwm[2] = 0.0
lc.publish ("MBOT MOTOR PWM CMD", command.encode ())
print ("\n" + "!"*80)
print("!!! EMERGENCY STOP ACTIVATED !!!"™)
print ("!!! Triggered by: TOUCHPAD PRESS !!!")
print ("!"*80)
print ("\nAll motors stopped. Exiting control loop
safely...")

print ("System halted.\n")

pitch

pitch

pitch

Exit the control loop
break # Exits the while True loop

Reset the IMU using Shoulder RI1
shoulder R1 = bt signals["shoulder R1"]
if shoulder Rl ==
theta x 0 = msg.imu _angles rpy[0] # Capture NEW reference

theta y 0 = msg.imu angles rpy[l] # Capture NEW reference

theta z 0 = msg.imu angles rpy[2] # Capture NEW reference

except KeyError:
print ("Waiting for sensor data...")

except KeyboardInterrupt:

print ("\nKeyboard interrupt received. Stopping motors...")
Emergency stop
command = mbot motor pwm t ()

command.utime = int (time.time () * 1leb)
command.pwm[0] = 0.0
command.pwm[1l] = 0.0
command.pwm([2] = 0.0

lc.publish ("MBOT MOTOR PWM CMD", command.encode ())

finally:

finish

finish

Save/log data

print (f"Saving data as {filename}...")

dl.writeOut () # Write logged data to the file

Stop the listener thread

listening = False

print ("Stopping LCM listener...")

listener thread.join(timeout=1) # Wait up to 1 second for thread to

Stop Bluetooth thread
controller thread.join(timeout=1) # Wait up to 1 second for thread to

controller.on options press|()

Stop motors

print ("Shutting down motors...\n")

command = mbot motor pwm t ()

command.utime = int (time.time() * 1leb)
command.pwm([0] 0.0

command.pwm[1] 0.0

command.pwm[2] 0.0
lc.publish ("MBOT MOTOR PWM CMD", command.encode ())

if name == " main_ ":
main ()

21

Extra IMU callibration stuff
#def wait for feedback(timeout=3.0):
t0 = time.time ()
while time.time() - t0 < timeout:
got at least one message?
if hasattr(msg, "imu angles rpy") and len(msg.imu_angles rpy) == 3:
return True
time.sleep (0.01)
#return False

#def calibrate imu(duration=1.5):
print (£" [CAL] Hold robot still ~{duration}s to calibrate IMU zero...")
xs, ys, zs = [1, [1, []
t0 = time.time ()
#while time.time() - tO0 < duration:
xs.append(msg.imu angles rpy[0])
ys.append(msg.imu_angles rpy[1l])
#zs.append(msg.imu_angles rpyl[2])
#time.sleep(0.005) # ~200 Hz

#x0 = float (np.mean (xs))
#y0 = float (np.mean(ys))
#z0 = float (np.mean(zs))

#print (f" [CAL] Offsets -> theta x 0={x0:.4f}, theta y 0={y0:.4f},
theta z 0={z0:.4£f}")
#return x0, y0, zO

File 2: Steering.py

General framework for ball-bot control for students to update as desired.
You may wish to make multiple versions of this file to run your ball-bot in
different modes!

struct mbot balbot feedback t
{

int64 t utime;

int32 t enc_ticks[3]; // absolute postional ticks
int32 t enc delta ticks[3]; // number of ticks since last step
int32 t enc _delta time; // [usec]

float imu_angles rpy[3]; // [radian]

float volts[4]; // volts

wun

import time

import lcm

import threading

import numpy as np

from mbot lcm msgs.mbot motor pwm t import mbot motor pwm t

from mbot lcm msgs.mbot balbot feedback t import mbot balbot feedback t

from Datalogger3 import datalogger
from ps4 controller api import PS4InputHandler

Constants for the control loop

FREQ = 200 # Frequency of control loop [Hz]

DT = 1 / FREQ # Time step for each iteration [sec]

PWM MAX = 0.98 # Max motor signal for full accel/decel of motor test (keep
between 0 and 1)

N GEARBOX = 70 # Motor gearbox ratio

N ENC = 64 # Ticks per revolution of encoder

R W 0.048 # Radii of omni-wheels [m]

R K = 0.121 # Radius of basketball [m]

IMU DEADZONE = np.radians(.3) # 0.5 degrees in radians = 0.00873 rad

Steering constants
THETA MAX = np.radians(3)
ALPHA THETA = 0.005

Tz scale = 0.4

Global flags to control the listening thread & msg data

listening = False
msg = mbot balbot feedback t()
last _time = 0

last_seen = {"MBOT BALBOT FEEDBACK": 0}

def feedback handler (channel, data):
"""Callback function to handle received mbot balbot feedback t messages"""
global msg
global last seen
global last time
last _time = time.time ()
last seen[channel] = time.time()
msg = mbot balbot feedback t.decode (data)

#Filtering
def apply deadzone (x, deadzone):
mwinw
Apply a deadzone filter to sensor readings.
Values within f*deadzone are set to zero to filter out noise.
This prevents constant small corrections due to sensor noise.
mwn
if abs(x) < deadzone:
return 0.0
return x

def lcm listener(lc):

"""Function to continuously listen for LCM messages in a separate thread"""

global listening
while listening:
try:

23

lc.handle timeout (100) # 100ms timeout

if time.time() - last time > 2.0:
print ("LCM Publisher seems inactive...")

elif time.time() - last seen["MBOT BALBOT FEEDBACK"] > 2.0:
print ("LCM MBOT BALBOT FEEDBACK node seems inactive...")

except Exception as e:
print (f"LCM listening error: {e}")
break

Motor encoder ticks to wheel angle (radians)

def calc enc2rad(ticks):
rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX)
return rad

Calculate motor torques T1l, T2, T3 from Tx, Ty, Tz
def calc _torque conv(Tx,Ty,Tz):

ul = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty)
u2 = (1.0/3.0)*(Tz + np.sqgrt(2)*(-1.0*np.sqrt(3)*Tx + Ty))
u3d3 = (1.0/3.0)*(Tz + np.sqrt(2)* (np.sqrt(3)*Tx + Ty))

return ul, u2, u3

Calculate ball angular position from encoder odometry
def calc_kinematic_conv(psil,psi2,psi3):
phix = np.sqrt(2.0/3.0) * (R W/R K) * (psi2 - psi3)
phiy = np.sqrt(2)/3.0 * (R W/R K) * (-2 * psil + psi2 + psi3)
(

2
phiz np.sqgrt(2) /3.0 * (R_W/R K) * (psil + psi2 + psi3)

return phix, phiy, phiz

def func clip(x,1lim lo,lim hi):
A function to clip values that exceed a threshold [lim lo,lim hi]
if x > 1lim hi:

x = lim hi
elif x < lim lo:
x = lim lo

return x

def main () :

=== Data Logging Initialization ===
trial num = int (input ("Test Number? "))
filename = f"steering control {trial num}.txt"

dl = datalogger (filename)

=== LCM Initialization ===

global listening

global msg

lc = lcm.LCM("udpm://239.255.76.67:76672ttl1=0")

subscription = lc.subscribe ("MBOT BALBOT FEEDBACK", feedback handler)

listening = True

listener thread = threading.Thread(target=lcm listener, args=(lc,),

daemon=True)

listener thread.start()
print ("Started continuous LCM listener...")

Starting encoder reference

enc_pos_1 start = msg.enc_ticks[0]
enc_pos_2 start = msg.enc_ticks([1]
enc_pos_ 3 start = msg.enc_ticks[2]
=== Controller Initialization ===

controller = PS4InputHandler (interface="/dev/input/js0O",
connecting using ds4drv=False)

controller thread = threading.Thread(target=controller.listen,

controller thread.daemon = True

controller thread.start()

print ("PS4 Controller is active...")

try:
command = mbot motor pwm t ()

=== Main Control Loop ===
print ("Starting balance + lean-steering control loop...")
time.sleep(0.5)

Data header

data header = |
"i t now Tx total Ty total Tz total "
"psi 1 psi 2 psi 3 dpsi 1 dpsi 2 dpsi 3 "
"phi x phi y phi z dphi x dphi y dphi z "
"theta x theta y theta z"

]

dl.appendData (data header)

i =20
t_start = time.time ()

t now = 0.0

enc_pos_ 1 start = msg.enc ticks[0]

enc_pos_2 start
enc _pos_ 3 start = msg.enc_ticks[2]

msg.enc_ticks[1]

Initialize motor commands
ul = u2 = u3 = 0.0

Starting IMU orientation (zero reference)
theta x 0 = msg.imu_angles rpy[O0]
theta y 0 = msg.imu angles rpy[1]
theta z 0 = msg.imu_angles rpy[2]

Desired lean for balance loop
theta d x = 0.0

args=(10,))

25

theta d y = 0.0

Balance PID gains and error

Kp theta = 13.0
Ki theta = 12.0
Kd theta = 0.12
err theta x prev = 0.0

Il
o
.
o

err theta y prev
int _theta x = 0.0
int theta y = 0.0

Previous ball angles

phi x prev = 0.0
phi y prev = 0.0
phi z prev = 0.0

Motor enable flag
motor on = 0

D-pad gain tuning state
prev_dpad up = 0
prev_dpad down = 0
prev_dpad right = 0
prev_dpad left = 0

gain _sel = 0 #
last gain change time = 0
GAIN CHANGE COOLDOWN = 0.
GAIN INC = {0: 0.1, 1: O

= Kp_theta, 1 = Ki_theta, 2 = Kd theta

while True:
time.sleep (DT)
t now = time.time() - t_start
i+=1

try:
Read sensors
bt signals = controller.get signals()

Motor enable
shoulder L1 = bt signals["shoulder L1"]
if shoulder L1 ==

motor on += 1

Joystick and triggers
js R x = bt signals["js R x"]
js R y = bt signals["Jjs R y"]
trigger L2 = bt signals["trigger L2"]
trigger R2 = bt signals["trigger R2"]

Raw IMU orientation relative to starting pose
theta x raw = msg.imu_angles rpy[0] - theta x 0

26

theta y raw = msg.imu_angles rpy[l] - theta y O
theta z raw = msg.imu angles rpy([2] - theta z 0

Deadzone filtering

theta x = apply deadzone(theta x raw, IMU DEADZONE)
theta y = apply deadzone(theta y raw, IMU DEADZONE)
theta z = apply deadzone(theta z raw, IMU DEADZONE)

Encoders

enc_pos_1 = msg.enc_ticks[0] - enc pos 1 start
enc _pos_ 2 = msg.enc_ticks[l] - enc pos 2 start
enc_pos_3 = msg.enc_ticks[2] - enc pos 3 start
enc_dtick 1 = msg.enc _delta ticks[0]
enc_dtick 2 = msg.enc_delta ticks[1]
enc_dtick 3 = msg.enc delta ticks[2]

enc_dt = msg.enc_delta time # [usec]

Wheel angles

psi 1 = calc_encZrad(enc_pos 1)
psi 2 = calc_enc2rad(enc_pos_2)
psi 3 = calc_encZrad(enc_pos_3)

Wheel angular velocities

if enc dt > 0:
dpsi 1 = calc _enc2rad(le6 * (enc_dtick 1 / enc dt))
dpsi 2 = calc _encZ2rad(le6 * (enc dtick 2 / enc_dt))
dpsi 3 = calc _enc2rad(le6 * (enc_dtick 3 / enc dt))

else:
dpsi 1

dpsi 2 = dpsi 3 = 0.0

Kinematic conversion: wheel angles -> ball angles
phi x, phi y, phi z = calc_kinematic conv(psi 1, psi 2, psi_3)

Ball angles -> angular velocities

dphi x = (phi x - phi x prev) / DT
dphi y = (phi y - phi y prev) / DT
dphi z = (phi_z - phi z prev) / DT
phi x prev = phi x
phi y prev = phi y
phi z prev = phi z

Joystick -> lean reference for steering

Stick right -> lean right (theta d x)

Stick forward -> lean forward (theta d y)

theta cmd x = js R x * THETA MAX

theta cmd y = -js R y * THETA MAX

Filter/smooth movement of setpoint

theta d x += ALPHA THETA * (theta cmd x - theta d x)
theta d y += ALPHA THETA * (theta cmd y - theta d y)

Balance loop (around lean setpoint)
err theta x = theta d x - theta x
err theta y = theta d y - theta y

int theta x += err theta x * DT
int theta y += err theta y * DT

d _err theta x = (err theta x - err theta x prev) / DT
d err theta y (err theta y - err theta y prev) / DT

Map lean error to torques

Ty balance = (Kp_theta * err theta x +
Ki theta * int theta x +
Kd theta * d err theta x)

Tx balance = (Kp_theta * err theta y +
Ki theta * int theta y +
Kd theta * d err theta y)
err theta x prev = err theta x

err theta y prev = err theta y

Z rotation/steering

Tx steering = 0.0
Ty steering = 0.0
Tz steering = (trigger R2 - trigger L2) * Tz scale

D-pad gain tuning

dpad up = bt signals["dir U"]
dpad down = bt signals["dir D"]
dpad right = bt signals["dir R"]
dpad left = bt signals["dir L"]

if t now - last gain change time > GAIN CHANGE COOLDOWN:
if dpad left == 1 and prev_dpad left == 0:

gain sel = (gain sel - 1) % 3
last _gain change time = t now

elif dpad right == 1 and prev_dpad right == 0:

gain sel = (gain sel + 1) % 3
last _gain change time = t now

elif dpad up == 1 and prev_dpad up == 0:
inc = GAIN INC.get(gain_sel, 0.01)
if gain sel == O0:
Kp_theta += in
elif gain sel == 1:
Ki theta += inc
elif gain sel ==
Kd theta += inc
last _gain_change time = t now

terminal

{theta =z}

(note:

elif dpad down == 1 and prev_dpad down == O0:
inc = GAIN INC.get(gain_sel, 0.01)

if gain sel == O0:
Kp theta -= inc

elif gain sel == 1:
Ki theta -= inc

elif gain_sel ==
Kd theta -= inc
last _gain_change time = t now

prev_dpad up = dpad up
prev_dpad down = dpad down
prev_dpad right = dpad right
prev_dpad left = dpad left

Combine outputs

Tx total = Tx balance + Tx steering
Ty total
Tz total

Ty balance + Ty steering

Tz steering

Tx,Ty,Tz -> ul,u2,u3
ul, u2, u3d = calc_torque conv(Tx_ total, Ty total, Tz total)

Clip to PWM limits

ul = func clip(ul, -PWM MAX, PWM MAX)
u2 = func_clip(u2, -PWM MAX, PWM MAX)
u3 = func clip(u3, -PWM MAX, PWM MAX)

Send individual motor commands
cmd utime = int(time.time() * 1le6)
command.utime = cmd utime

if (motor on >= 1):

command.pwm[0] = -ul
command.pwm([1l] = -u2
command.pwm[2] = -u3

lc.publish ("MBOT MOTOR PWM CMD", command.encode ())

Store data in data logger
data = [i, t now, phi x, phi y]
dl.appendData (data)

Print out data in terminal
TODO: [IF DESIRED]: Update for what info you want to see in
this is only printed data, not logged!)
print(
f"theta x: {theta x} | theta y: {theta y} | theta z:

Emergency stop

29

safely.

emergency stop = bt signals["but tri"]
if emergency stop ==
Immediately stop all motors
command.pwm = [0.0, 0.0, 0.0]

command.pwm[0] 0.0
command.pwm([1l] = 0.0
command.pwm[2] = 0.0

lc.publish ("MBOT MOTOR PWM CMD", command.encode ())

print ("\n" + "!"*80)
print ("!!! EMERGENCY STOP ACTIVATED !!!"™)
print ("!!! Triggered by: TOUCHPAD PRESS !!!")
print ("!"*80)

(

print ("\nAll motors stopped. Exiting control loop

..u)

print ("System halted.\n")

Exit the control loop
break # Exits the while True loop

Zero the IMU

shoulder R1 = bt signals["shoulder R1"]

if shoulder R1 ==
theta x 0 = msg.imu angles rpy[0]
theta y 0 = msg.imu_angles rpy[1l]
theta z 0 = msg.imu angles rpy[2]

except KeyError:
print ("Waiting for sensor data...")

except KeyboardInterrupt:

print ("\nKeyboard interrupt received. Stopping motors...")
Emergency stop
command = mbot motor pwm t ()

command.utime = int(time.time() * 1le6)
command.pwm[0] = 0.0
command.pwm[1l] = 0.0

command.pwm[2] 0.0
lc.publish ("MBOT MOTOR_ PWM CMD", command.encode ())

finally:

finish

Save/log data
print (f"Saving data as {filename}...")

dl.writeOut () # Write logged data to the file
Stop the listener thread
listening = False

print ("Stopping LCM listener...")

listener thread.join(timeout=1) # Wait up to 1 second for thread to

Stop Bluetooth thread

30

controller thread.join(timeout=1) # Wait up to 1 second for thread to

finish
controller.on options press ()
Stop motors
print ("Shutting down motors...\n")
command = mbot motor pwm t ()
command.utime = int (time.time () * 1leb)
command.pwm[0] = 0.0
command.pwm[1l] = 0.0
command.pwm([2] = 0.0
lc.publish ("MBOT MOTOR_ PWM CMD", command.encode ())
if name == " main_ ":

main ()

	ROB311: Ballbot Final Report
	Introduction
	Methodology
	Device Communication & Information Transfer

	
	Our Ballbot uses two coupled feedback control loops, one for balancing and one for steering. Both controls use the control architecture articulated in the above section. The Balance Controller is the primary loop that is always active, whereas the steering control modifies the balance behaved to produce controlled motion at a desired lean angle. The balance controller works by stabilizing the robot's lean angles in the X and Y axes. The onboard IMU measures these angles, and the balance controller computes the error between robot position and desired angle. Our tuned PID values as discussed in the next section allowed us to send commands back to the motors on our robot, and maintain our balance. Our steering controller allows both translational and rotational motion while maintaining our robot’s balance. Our desired steering location is determined from user joystick input on a PS4 controller, and converted to a desired angle. This steering PID loop now controls our robots desire to lean in that direction, with
	
	PID Tuning
	Results
	IMU vs Encoder Spin Speeds
	Balance Control

	Conclusion & Future Work
	Appendix A - Ballbot Figures and Terms
	Appendix B - Additional Figures
	Appendix C - Python Code
	File 1: PID_Controller.py
	File 2: Steering.py

