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Introduction 
This report describes our Ballbot system created for the University of Michigan Robotics class, ROB311: How to 
Build Robots and Make Them Move. Our robot is based off of the MBot ecosystem and is optimized to balance and 
steer while on top of a standard basketball. We designed mechanical aspects of our robot in Onshape and we used 
PID controllers to create the control structure. Our robot used sensor input from an on-board IMU as well as motor 
encoders. Our goal was to create a Ballbot that can compete and win our in-class competition, which required 
long-term balancing and steering algorithms to be effective and stable. We were proud that our ballbot took 3rd 
place in our in-class competition and was able to consistently balance despite its constraints. 
 
Methodology 
Device Communication & Information Transfer 

 
Figure 1. Ballbot System Architecture 

 
Our Ballbot used a two computer control stack consisting of a Pico microcontroller that handles all of the low-level 
processing, and a Raspberry Pi for high-level control. This separation of boards allows for sensor data and motor 
actuation to be handled much faster from the computationally heavy control logic. The Pico interfaces directly with 
our onboard sensors, including the IMU and the motor encoders. During each cycle, the Pico receives data from 
them and sends them back to the Raspberry Pi. The Pico also receives commands from the Raspberry Pi, and sends 
those signals right to the motor drivers. The Raspberry Pi runs the main control code at 200 Hz. It takes all of the 
data from the Pico, evaluates it against the control algorithms, and generates the proper motor outputs. Both 
directions of this communication happen through USB serial. When needed, our PS4 controller also sends feedback 
to the Raspberry Pi through bluetooth. This information is then used in our control algorithms. 

 
Controllers & Actuation 

 
 
 
 
 
 
  
 
 
 
 

Figure 2. Ballbot Balance Control Loop​ ​ ​ ​  Figure 3. Ballbot Steering Control Loop 
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Our Ballbot uses two coupled feedback control loops, one for balancing and one for steering. Both controls use the 
control architecture articulated in the above section. The Balance Controller is the primary loop that is always active, 
whereas the steering control modifies the balance behaved to produce controlled motion at a desired lean angle. The 
balance controller works by stabilizing the robot's lean angles in the X and Y axes. The onboard IMU measures 
these angles, and the balance controller computes the error between robot position and desired angle. Our tuned PID 
values as discussed in the next section allowed us to send commands back to the motors on our robot, and maintain 
our balance. Our steering controller allows both translational and rotational motion while maintaining our robot’s 
balance. Our desired steering location is determined from user joystick input on a PS4 controller, and converted to a 
desired angle. This steering PID loop now controls our robots desire to lean in that direction, with smoothing in 
place to both lean to and from that angle. The balance and steering control outputs are summed together to form the 
total control effort for our ballbot, outputting torque commands to our motors. 
 
PID Tuning 
For our final PID values, we spent many hours meticulously honing them in until we found the optimal functionality 
for our own bot. Our final values were: Kp = 13, Ki = 12, Kd = 0.1. We started by tuning just Kp with no other gain 
involved. Initially adjusting the value in large amounts proved beneficial because once we saw our bot oscillating on 
top of the ball, we knew we’d gone too high. From there we were able to reduce the value at smaller increments until 
we landed on 13. With just Kp, our bot was balancing considerably better than the system without any error 
correction, but still needed some work.  
 
Thus, we decided to introduce Kd next. To our surprise, we consistently found that Kd was making a negative impact 
on balance performance, so we wanted to minimize it to a point where our bot wasn’t too jumpy but could still 
respond to quick changes in movement. This led to us settling at a value of 0.1, since anything above that was too 
reactive and anything below didn’t assist as much as possible. Even with both of these gains our bot still couldn’t 
hold a single position for very long, and the longer it balanced the worse it performed. 
 
This led us to introducing a Ki term to counteract accumulated error in the system. We started off with incremental 
small values (increase by 0.02 with Ki < 1); however, this made little to no positive impact on the balancing, so we 
decided to increase Ki by whole numbers to see what happens. This made a massive improvement to our system and 
seemed to be the thing we were missing all along. In search of finding the best Ki, we pushed the value to 50, which 
proved to be much too far. We then decreased to 30, to 20, to the teens, then we settled at 12. Before Ki was 
involved, our bot would sloppily balance for about 15 seconds, then lean one way and never recover. However, the 
introduction of Ki solved both of these issues. The motors now actuate on a very small scale to keep the ball in 
virtually one spot on the floor and even if the bot does lean, it can recover and remount on top of the ball. 
 
Our Best Practices for Control 
We attempted to implement several best practices to increase the accuracy of our control algorithm but ultimately 
ended up using only two of them: dead-band of 0.3° around 0° on the IMU and low-pass filter of controller steering 
commands. The dead-band essentially removes small amounts of noise when the bot is perfectly mounted on top of 
the ball. This worked very well because it allows for less accumulation of error and less unnecessary small motor 
actuation, which we noticed during testing. The low-pass filter acts as a mode of smoothing the steering commands 
that come from the joystick. A human is inherently bad at making precise, continuous movements of their thumb on 
a joystick, resulting in jerky inputs which are devastating to the adjustment of the ballbot’s reference angle. This 
filter ensures that quick movements of the joystick won’t throw the bot off of the ball, but instead correlate to a 
smooth change in reference angle, enabling effective steering. 
 
We also attempted to dead-band the joystick and limit integral gain windup. Though these are good ideas in theory, 
we ended up having issues with both. Dead-banding the joystick in a small amount should’ve just removed any 
physical stick drift in the controller when at rest, but it ended up rendering our steering algorithm useless. In other 
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words, motion of the joystick wouldn’t correlate to any physical steering of the ballbot. Additionally, our idea for 
limiting integral gain windup came from the fact that Ki increased significantly whenever the bot and ball would 
start to “run away,” always resulting in the bot falling off. We thought that if we set a limit to the max Ki then it 
would help the runaway situation, but it just made it even worse. This does make sense because if Ki is limited when 
leaning, then the bot’s control efforts are less than they could be, resulting in inefficient lean recovery. 
 
Results  
IMU vs Encoder Spin Speeds 
In order to collect data comparing IMU measurements to encoder calculations of spin speed (d𝜗z), we controlled the 
ball bot with 4 different duty cycles. Each cycle was 3 seconds, with Tz = [0.75, 1.5, 2.25, 3] for each of the four 
cycles, respectively. We controlled the torque output for three seconds to be able to trim noisy data during 
acceleration between duty cycles. 
  

 
Figure 4. Ballbot IMU Measurements vs Encoder Calculations 

 
While varying Tz for each cycle, we recorded IMU angles (𝜗x, 𝜗y, 𝜗z) and encoder angular velocities (d𝜑x, d𝜑y, d𝜑z) 
from the ballbot datalogger. The orientation angles (𝜗x, 𝜗y, 𝜗z) are obtained from the ballbot’s IMU measurements. 
Each angle is relative to the initial reference value to express the ballbot’s orientation relative to the starting pose. To 
reduce the effect of sensor noise and prevent small, unnecessary corrections, we apply a deadzone filter to each 
angle. The deadzone filter clips any angle less than the deadzone (0.3°) to zero, while values that exceed this 
threshold are unchanged. This filtering step improves the stability of control and allows for smoother angle error 
correction when balancing and steering the ball-bot.  
 
The ballbot encoder data measures the position of each wheel on the ballbot. The raw encoder counts are converted 
into wheel rotation angles (𝜓1, 𝜓2 ,𝜓3) in radians. Wheel angular velocities (d𝜓1, d𝜓2 , d𝜓3) are computed by 
differentiating psi123 with respect to time. We then map the wheel angular velocity to the ball’s motion with a 
kinematic conversion model. The ball’s angular velocities (d𝜑x, d𝜑y, d𝜑z) as seen in Figure 4 capture the rotational 
motion of the ball.  
 
Once we obtained the IMU and encoded angular velocities at four different Tz duty cycles we used Matlab to 
present Figure 4, a comparison of the Z-axis angular velocity measured by the IMU and estimated from the wheel 
encoders. For each Tz value, we extracted a smaller time window without ballbot accelerations, and calculated the 
mean and standard deviations for d𝜗z and d𝜑z . 
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As seen in Figure 4, the angular velocity estimated from the wheel encoders is consistently higher than the angular 
velocity measured by the IMU. This difference can be explained by factors related to sensing, assumptions when 
modeling, and interactions between the ball and the wheel. First, the encoder-based angular velocity is mapped using 
a kinematic model that assumes ideal rolling conditions without slip. In reality, slip occurs, which causes the wheels 
to rotate slightly faster than the ball itself, leading to higher values of d𝜑z. Additionally, the deadzone filter that we 
apply to IMU angles reduces sensitivity to small rotations that are close to zero. Although this is helpful for balance 
control, it may contribute to a lower average angular velocity from the IMU relative to the encoder’s estimate.  
 
Balance Control 
To develop the balance controller, we tuned the PID controller based on the ballbot’s observed behaviors at different 
proportional (Kp), integral (Ki), and derivative (Kd) values. The proportional term responds to the current error, the 
integral term reduces steady state error, and the derivative term dampens oscillations by reacting to small changes in 
error. Figure 5 shows the ballbot’s lean angle, individual PID control gains, and resulting torque output along the 
x-axis for 15 seconds of balancing. For our controller, the proportional term contributes the most to the torque output 
and is the most dominant component of our balance control. 
 

 
        Figure 5. Ball Angle, PID Control Efforts, and Total Torque for Balance 

 
When comparing subplots two and three in Figure 5, we see that the shape of the torque plot closely matches the 
shape of the proportional control term of the PID controller. This indicates that the balance control’s response is 
primarily driven by the current lean angle error. In contrast, the integral and derivative terms have smaller 
magnitudes overall. We theorize that this is because the integral and derivative gains work to remove different types 
of error, past and future error. The integral and derivative terms serve mainly to correct for residual error and 
oscillations, rather than drive the overall balance control effort.  
 
Steering Control  
When comparing our ball’s odometry to actual position, we used our steering control to drive the ballbot in a square 
approximately 2m x 2m. In order to determine the robot’s odometry, we recorded the ball’s angular position (𝜑x and 
𝜑y) during the steering control. 𝜑x and 𝜑y are calculated based on a kinematic conversion from the wheel rotation 
(𝜓1, 𝜓2 ,𝜓3). The ballbot’s wheel rotation angles are determined based on encoder readings on each of the wheels. 
Using the equations (1) xk = -rk *  𝜑y and (2) yk = rk * 𝜑x, with rk = 0.121m (the radius of the ball) we are able to 
calculate the ballbot’s odometry. Figure 6 plots the ballbot’s odometry when driving in a square. 
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       Figure 6. Ball Odometry Driving a 2m x 2m Square 

 
As seen in the figure, the ball’s odometry shows a lot of drift from the actual position relative to the start. This 
discrepancy is due to accumulated odometry error over time. The odometry is computed entirely from wheel 
encoder measurements. Any small error in the encoder readings or kinematic conversions from wheel rotations to 
ball angles accumulates overtime. Minor inaccuracies can cause drift, resulting in a lopsided or skewed square, like 
seen in Figure 6. 
  
Second, the wheels can slip or have uneven contact on the surface of the ball. When steering the ballbot, especially 
at square corners, slip is likely to occur on the ball, causing the measured wheel rotation to differ from the actual ball 
motion. This leads to incorrect 𝜑xand 𝜑y values and therefore incorrect position estimates. Over the course of the 
square path, these errors accumulate and produce a shape other than a perfect square. Finally, we did not implement 
a position PID controller, so there was no mechanism in our ballbot to correct for odometry errors. Therefore, the 
ballbot’s odometry estimate will differ from the true position of the ball.  
 
Conclusion & Future Work 
In this project, we designed, built, and tested a Ballbot that balances and steers on a standard basketball using an 
IMU, motor encoders, and two PID loops for balancing and steering. We quantified performance through logged 
experiments including IMU vs encoder yaw-rate comparisons, steady-state balancing plots, and a square driving test 
for odometry. The results showed that encoder-based yaw-rate estimates were consistently higher than IMU 
measurements, which we attribute mainly to slip and non-ideal rolling that violate kinematic assumptions, and our 
balancing data showed that the proportional term dominated the control effort while the integral and derivative terms 
mainly reduced residual bias and oscillations. The square driving test demonstrated significant odometry drift over 
time due to accumulated encoder and modeling error and the lack of a position-level correction loop. 
 
With more time, we would improve robustness by reducing slip sensitivity through better wheel-ball contact, adding 
stronger filtering and saturation best practices in the control pipeline, and implementing mechanical changes to the 
robot to overall increase its effectiveness. Some of these mechanical changes may include increased robot Center of 
Mass or adding balancing fingers as seen in the ETH Zurich paper. Overall, this project was a fantastic learning 
experience and we are very satisfied with the robot we developed. 
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Appendix A - Ballbot Figures and Terms  
 

 
Figure A. Wheel Rotation Angles, Top View 

 
Wheel Rotation Angles (𝜓1, 𝜓2 ,𝜓3) as calculated from motor encoder ticks. 𝜓1, 𝜓2 ,𝜓3 are used to calculate the ball’s 
angular position (𝜑x, 𝜑y, 𝜑z) in the x-y-z plane. In turn, we can calculate the changes in these terms by taking the 
derivative of each.  
 
 

 
Figure B. Position of the Ball, Side View 

 
𝜗x as seen in the figure, represents the position of the ball relative to its starting position (𝜗x = 0). As discussed in the 
balance control portion of the report, the angle of the ballbot is used to drive balance control.  
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Figure C. CAD of Motor Mounts, Various Views 

 
Though we were given creative liberty in designing our motor mounts, there were still requirements we had to meet 
to ensure proper ball bot functionality. The mounts must: not interfere with internal bot components, ensure 45° 
wheel contact with the ball, mount to the laser cut holes on the baseplate, and securely house our motors. 
Satisfaction of these requirements can be found in Figure C. 
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Appendix B - Additional Figures 

Figure 1. Ballbot System Architecture (Enlarged) 
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Figure 2. Ballbot Balance Control Loop (Enlarged) 
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Figure 3. Ballbot Steering Control Loop (Enlarged) 
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Ballbot Team A10 (left to right): Wyatt Wrubel, James Oosterhouse, and Caitlin Roberts 
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Appendix C - Python Code 
 
File 1: PID_Controller.py 
""" 
General framework for ball-bot control for students to update as desired. 
You may wish to make multiple versions of this file to run your ball-bot in 
different modes! 
 
struct mbot_balbot_feedback_t 
{ 
    int64_t utime; 
    int32_t enc_ticks[3];       // absolute postional ticks 
    int32_t enc_delta_ticks[3]; // number of ticks since last step 
    int32_t enc_delta_time;     // [usec] 
    float imu_angles_rpy[3];    // [radian] 
    float volts[4];             // volts 
} 
 
""" 
 
import time 
import lcm 
import threading 
import numpy as np 
from mbot_lcm_msgs.mbot_motor_pwm_t import mbot_motor_pwm_t 
from mbot_lcm_msgs.mbot_balbot_feedback_t import mbot_balbot_feedback_t 
from DataLogger3 import dataLogger 
from ps4_controller_api import PS4InputHandler 
 
# Constants for the control loop 
FREQ = 200  # Frequency of control loop [Hz] 
DT = 1 / FREQ  # Time step for each iteration [sec] 
PWM_MAX = 0.98  # Max motor signal for full accel/decel of motor test (keep 
between 0 and 1) 
N_GEARBOX = 70 # Motor gearbox ratio 
N_ENC = 64 # Ticks per revolution of encoder 
R_W = 0.048 # Radii of omni-wheels [m] 
R_K = 0.121 # Radius of basketball [m] 
IMU_DEADZONE = np.radians(.3)  # 0.5 degrees in radians ≈ 0.00873 rad 
 
# Global flags to control the listening thread & msg data 
listening = False 
msg = mbot_balbot_feedback_t() 
last_time = 0 
last_seen = {"MBOT_BALBOT_FEEDBACK": 0} 
 
def feedback_handler(channel, data): 
    """Callback function to handle received mbot_balbot_feedback_t messages""" 
    global msg 
    global last_seen 
    global last_time 
    last_time = time.time() 
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    last_seen[channel] = time.time() 
    msg = mbot_balbot_feedback_t.decode(data) 
 
 
#Filtering  
def apply_deadzone(x, deadzone): 
    """ 
    Apply a deadzone filter to sensor readings. 
    Values within ±deadzone are set to zero to filter out noise. 
    This prevents constant small corrections due to sensor noise. 
    """ 
    if abs(x) < deadzone: 
        return 0.0 
    return x 
    
 
def lcm_listener(lc): 
    """Function to continuously listen for LCM messages in a separate thread""" 
    global listening 
    while listening: 
        try: 
            lc.handle_timeout(100)  # 100ms timeout 
            if time.time() - last_time > 2.0: 
                print("LCM Publisher seems inactive...") 
            elif time.time() - last_seen["MBOT_BALBOT_FEEDBACK"] > 2.0: 
                print("LCM MBOT_BALBOT_FEEDBACK node seems inactive...") 
        except Exception as e: 
            print(f"LCM listening error: {e}") 
            break 
 
# Motor encoder ticks to wheel angle (radians)  
def calc_enc2rad(ticks): 
    rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX) 
    return rad 
 
# Calculate motor torques T1, T2, T3 from Tx, Ty, Tz 
def calc_torque_conv(Tx,Ty,Tz): 
    u1 = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty) 
    u2 = (1.0/3.0)*(Tz + np.sqrt(2)*(-1.0*np.sqrt(3)*Tx + Ty)) 
    u3 = (1.0/3.0)*(Tz + np.sqrt(2)*(np.sqrt(3)*Tx + Ty)) 
 
    return u1, u2, u3 
 
# Calculate ball angular position from encoder odometry 
def calc_kinematic_conv(psi1,psi2,psi3): 
    phix = np.sqrt(2.0/3.0) * (R_W/R_K) * (psi2 - psi3) 
    phiy = np.sqrt(2)/3.0 * (R_W/R_K) * (-2 * psi1 + psi2 + psi3) 
    phiz = np.sqrt(2)/3.0 * (R_W/R_K) * (psi1 + psi2 + psi3) 
 
    return phix, phiy, phiz 
 
def func_clip(x,lim_lo,lim_hi): 
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    # A function to clip values that exceed a threshold [lim_lo,lim_hi] 
    if x > lim_hi: 
        x = lim_hi 
    elif x < lim_lo: 
        x = lim_lo 
    return x 
 
 
def main(): 
    # === Data Logging Initialization === 
    # Prompt user for trial number and create a data logger 
    trial_num = int(input("Test Number? ")) 
    filename = f"PID_control_{trial_num}.txt" 
    dl = dataLogger(filename) 
     
    # === LCM Messaging Initialization === 
    # Initialize the serial communication protocol 
    global listening 
    global msg 
    lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=0") 
    subscription = lc.subscribe("MBOT_BALBOT_FEEDBACK", feedback_handler) 
    # Start a separate thread for reading LCM data 
    listening = True 
    listener_thread = threading.Thread(target=lcm_listener, args=(lc,), 
daemon=True) 
    listener_thread.start() 
    print("Started continuous LCM listener...") 
 
    #print("Waiting for first IMU message...") 
    #if not wait_for_feedback(): 
    #   print("[WARN] No IMU feedback.") 
         
    # theta_x_0, theta_y_0, theta_z_0 = calibrate_imu(duration=5) 
 
    enc_pos_1_start = msg.enc_ticks[0] 
    enc_pos_2_start = msg.enc_ticks[1] 
    enc_pos_3_start = msg.enc_ticks[2] 
 
    # === Controller Initialization === 
    # Create an instance of the PS4 controller handler 
    controller = 
PS4InputHandler(interface="/dev/input/js0",connecting_using_ds4drv=False) 
    # Start a separate thread to listen for controller inputs 
    controller_thread = threading.Thread(target=controller.listen, args=(10,)) 
    controller_thread.daemon = True  # Ensures the thread stops with the main 
program 
    controller_thread.start() 
    print("PS4 Controller is active...") 
 
    try: 
        command = mbot_motor_pwm_t() 
        # === Main Control Loop === 
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        print("Starting steering control loop...") 
        time.sleep(0.5) 
 
        # Store variable names as header to data logged, for easier parsing in 
Matlab 
        # TODO [IF DESIRED]: Update data header variables names to match actual 
data logged (at end of loop) 
        data = ["i t_now phi_x phi_y"] 
        dl.appendData(data) 
 
        i = 0  # Iteration counter 
        t_start = time.time() 
        t_now = 0 
 
        enc_pos_1_start = msg.enc_ticks[0] 
        enc_pos_2_start = msg.enc_ticks[1] 
        enc_pos_3_start = msg.enc_ticks[2] 
 
        # Initialize Torque Commands 
        u1 = 0 
        u2 = 0 
        u3 = 0 
 
        # Starting IMU Orientation 
        theta_x_0 = msg.imu_angles_rpy[0] 
        theta_y_0 = msg.imu_angles_rpy[1] 
        theta_z_0 = msg.imu_angles_rpy[2] 
 
        desired_theta = 0.0 # upright  
         
        Kp = 13 # Proportional gain  
        # Between 0-15 
        Ki = 12  # Integral gain  
        Kd = .1  # Derivative gain  
 
 
        # Starting error and integral terms  
        prev_error_x, prev_error_y = 0.0, 0.0 
        integral_x, integral_y = 0.0, 0.0 
        motor_on = 0 
        error_x = 0.0 
        error_y = 0.0 
        desired_theta_x = 0 
        desired_theta_y = 0 
        prev_dpad_up = 0 
        prev_dpad_down = 0 
        prev_dpad_right = 0 
        prev_dpad_left = 0 
 
        while True: 
            time.sleep(DT) 
            t_now = time.time() - t_start  # Elapsed time 
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            i += 1 
 
            try: 
                # retreive dictionary of button press signals from handler 
                bt_signals = controller.get_signals() 
 
                shoulder_L1 = bt_signals["shoulder_L1"]  
 
                if shoulder_L1 == 1:  # Rising edge detection 
                   motor_on += 1 
 
                # PID Tuning - DPad 
                # Previous button states for edge detection 
                prev_dpad_up = 0 
                prev_dpad_down = 0 
                prev_dpad_right = 0 
                prev_dpad_left = 0 
                if (motor_on >= 1):#Calculate Theta Error  
                    error_x = desired_theta_x - theta_x 
                    integral_x += error_x 
                    integral_y += error_y 
                # Debouncing 
                last_gain_change_time = 0 
                GAIN_CHANGE_COOLDOWN = 0.12  # 120ms between changes 
 
                # Gain selection index: 0=Kp, 1=Ki, 2=Kd 
                gain_sel = 0 
 
                # Increment amounts for each gain type 
                GAIN_INC = {0: 0.1, 1: 0.01, 2: 0.01} 
                #           Kp↑    Ki↑     Kd↑ 
 
                # Read D-pad button states (every loop iteration at 200 Hz) 
                dpad_up = bt_signals["dir_U"]      # 0 or 1 
                dpad_down = bt_signals["dir_D"]    # 0 or 1 
                dpad_right = bt_signals["dir_R"]   # 0 or 1 
                dpad_left = bt_signals["dir_L"]    # 0 or 1` 
 
                # LEFT button: cycle backward through gains 
                if dpad_left == 1 and prev_dpad_left == 0:  # Rising edge 
detection 
                    gain_sel = (gain_sel - 1) % 3  # P←I←D←P (wraps around) 
                    selection_changed = True 
                    last_gain_change_time = t_now 
 
                # RIGHT button: cycle forward through gains   
                elif dpad_right == 1 and prev_dpad_right == 0: 
                    gain_sel = (gain_sel + 1) % 3  # P→I→D→P (wraps around) 
                    selection_changed = True 
                    last_gain_change_time = t_now 
                 
                # UP button: INCREASE selected gain 
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                elif dpad_up == 1 and prev_dpad_up == 0: 
                    inc = GAIN_INC.get(gain_sel, 0.01)  # Get increment size 
                    if gain_sel == 0:     # Kp selected 
                        Kp += inc  # Increase by 0.1 
                        #Kp += inc 
                    elif gain_sel == 1:   # Ki selected 
                        Ki += inc  # Increase by 0.01 
                        #Ki += inc 
                    elif gain_sel == 2:   # Kd selected 
                        Kd += inc  # Increase by 0.01 
                        #Kd += inc 
                    gain_changed = True 
                    last_gain_change_time = t_now 
 
                # DOWN button: DECREASE selected gain 
                elif dpad_down == 1 and prev_dpad_down == 0: 
                    inc = GAIN_INC.get(gain_sel, 0.01)  # Get increment size 
                    if gain_sel == 0:     # Kp selected 
                        Kp -= inc  # Increase by 0.1 
                        #Kp -= inc 
                    elif gain_sel == 1:   # Ki selected 
                        Ki -= inc  # Increase by 0.01 
                        #Ki -= inc 
                    elif gain_sel == 2:   # Kd selected 
                        Kd -= inc  # Increase by 0.01 
                        #Kd -= inc 
                    gain_changed = True 
                    last_gain_change_time = t_now 
 
                # parse out individual buttons you want data from 
                js_R_x = bt_signals["js_R_x"]   # steering bot (XY) with js_R 
                js_R_y = bt_signals["js_R_y"] 
 
                trigger_L2 = bt_signals["trigger_L2"]   # spinning bot (Z) with 
L2/R2 triggers 
                trigger_R2 = bt_signals["trigger_R2"] 
 
                # Raw IMU Orientation 
                theta_x_raw = msg.imu_angles_rpy[0] - theta_x_0 
                theta_y_raw = msg.imu_angles_rpy[1] - theta_y_0 
                theta_z_raw = msg.imu_angles_rpy[2] - theta_z_0 
                 
                # Filtered IMU Data 
                theta_x = apply_deadzone(theta_x_raw, IMU_DEADZONE) 
                theta_y = apply_deadzone(theta_y_raw, IMU_DEADZONE) 
                theta_z = apply_deadzone(theta_z_raw, IMU_DEADZONE) 
 
                #Calculate Theta Error  
                error_x = desired_theta - theta_x 
                print("error_x: ", error_x) 
                print("\n") 
                error_y = desired_theta - theta_y 
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                print("error_x: ", error_x) 
                print("\n") 
 
                integral_x += error_x 
                integral_y += error_y 
 
                # Encoder ticks 1, 2, and 3 
                enc_pos_1 = msg.enc_ticks[0] - enc_pos_1_start 
                enc_pos_2 = msg.enc_ticks[1] - enc_pos_2_start 
                enc_pos_3 = msg.enc_ticks[2] - enc_pos_3_start 
 
                # Change in ticks  
                enc_dtick_1 = msg.enc_delta_ticks[0] 
                enc_dtick_2 = msg.enc_delta_ticks[1] 
                enc_dtick_3 = msg.enc_delta_ticks[2] 
 
                #Change in time (microseconds) 
                enc_dt = msg.enc_delta_time  
 
                # Calculate motor angles from encoder ticks 
                # Wheel Rotation Angles (input) 
                psi_1 = calc_enc2rad(enc_pos_1) 
                psi_2 = calc_enc2rad(enc_pos_2) 
                psi_3 = calc_enc2rad(enc_pos_3) 
                print('Psi1: ', psi_1, 'Psi2: ', psi_2, 'Psi3: ', psi_3) 
 
                # Wheel Angular Velocities 
                dpsi_1 = calc_enc2rad(1e6*(enc_dtick_1/enc_dt)) 
                dpsi_2 = calc_enc2rad(1e6*(enc_dtick_2/enc_dt)) 
                dpsi_3 = calc_enc2rad(1e6*(enc_dtick_3/enc_dt))     
                print('dPsi1: ', dpsi_1, 'dPsi2: ', dpsi_2, 'dPsi3: ', dpsi_3) 
 
                # Calculate ball's roll and translation through kinematic 
conversions of wheel data 
                # Ball Angular Position 
                phi_x, phi_y, phi_z = calc_kinematic_conv(psi_1, psi_2, psi_3) 
 
                # Ball Angular Velocity 
                dphi_x, dphi_y, dphi_z = 
calc_kinematic_conv(dpsi_1,dpsi_2,dpsi_3) 
 
                # Calculate the desired x,y,z torque commands  
                # LOW PASS FILTER ON THE D TERM  
                Ty = Kp * error_x + Kd*(error_x - prev_error_x)/DT + 
Ki*integral_x*DT 
 
                Kp_x = Kp*error_y 
                Kd_x = Kd*(error_y - prev_error_y)/DT 
                Ki_x = Ki*integral_y*DT 
                Tx = Kp_x + Kd_x + Ki_x 
                #Tx = Kp * error_y + Kd*(error_y - prev_error_y)/DT + 
Ki*integral_y*DT 

19 



 

                Tz = 0 
 
                # Calculate motor effort/commands from desired Tx,Ty,Tz motion 
                u1, u2, u3 = calc_torque_conv(Tx,Ty,Tz) 
                u1 = func_clip(u1,-PWM_MAX,PWM_MAX) 
 
                # Set the Previous Error  
                prev_error_x = error_x 
                prev_error_y = error_y 
 
                # Send individual motor commands 
                u1 = func_clip(u1,-PWM_MAX,PWM_MAX) 
                u2 = func_clip(u2,-PWM_MAX,PWM_MAX) 
                u3 = func_clip(u3,-PWM_MAX,PWM_MAX) 
                cmd_utime = int(time.time() * 1e6) 
                command.utime = cmd_utime 
                if (motor_on >= 1): 
                    command.pwm[0] = -u1 
                    command.pwm[1] = -u2 
                    command.pwm[2] = -u3 
                lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
                 
                # Store data in data logger 
                data = [i, t_now, phi_x, phi_y] 
                dl.appendData(data) 
 
                # Print out data in terminal 
                # TODO: [IF DESIRED]: Update for what info you want to see in 
terminal (note: this is only printed data, not logged!) 
                print( 
                    f"theta_x: {theta_x} | theta_y: {theta_y} | theta_z: 
{theta_z} |" 
                ) 
 
                # Emergency Stop with Triangle Button  
                emergency_stop = bt_signals["but_tri"] 
                if emergency_stop == 1: 
                    # Immediately stop all motors 
                    command.pwm = [0.0, 0.0, 0.0] 
                    command.pwm[0] = 0.0 
                    command.pwm[1] = 0.0 
                    command.pwm[2] = 0.0 
 
                    lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
                     
                    print("\n" + "!"*80) 
                    print("!!! EMERGENCY STOP ACTIVATED !!!") 
                    print("!!! Triggered by: TOUCHPAD PRESS !!!") 
                    print("!"*80) 
                    print("\nAll motors stopped. Exiting control loop 
safely...") 
                    print("System halted.\n") 
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                    # Exit the control loop 
                    break  # Exits the while True loop 
 
                # Reset the IMU using Shoulder_R1 
                shoulder_R1 = bt_signals["shoulder_R1"] 
                if shoulder_R1 == 1: 
                    theta_x_0 = msg.imu_angles_rpy[0]  # Capture NEW reference 
pitch 
                    theta_y_0 = msg.imu_angles_rpy[1]  # Capture NEW reference 
pitch 
                    theta_z_0 = msg.imu_angles_rpy[2]  # Capture NEW reference 
pitch 
 
 
            except KeyError: 
                print("Waiting for sensor data...") 
 
    except KeyboardInterrupt: 
        print("\nKeyboard interrupt received. Stopping motors...") 
        # Emergency stop 
        command = mbot_motor_pwm_t() 
        command.utime = int(time.time() * 1e6) 
        command.pwm[0] = 0.0 
        command.pwm[1] = 0.0 
        command.pwm[2] = 0.0 
        lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
     
    finally: 
        # Save/log data 
        print(f"Saving data as {filename}...") 
        dl.writeOut()  # Write logged data to the file 
        # Stop the listener thread 
        listening = False 
        print("Stopping LCM listener...") 
        listener_thread.join(timeout=1)  # Wait up to 1 second for thread to 
finish 
        # Stop Bluetooth thread 
        controller_thread.join(timeout=1)  # Wait up to 1 second for thread to 
finish 
        controller.on_options_press() 
        # Stop motors 
        print("Shutting down motors...\n") 
        command = mbot_motor_pwm_t() 
        command.utime = int(time.time() * 1e6) 
        command.pwm[0] = 0.0 
        command.pwm[1] = 0.0 
        command.pwm[2] = 0.0 
        lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
 
if __name__ == "__main__": 
    main() 
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# Extra IMU callibration stuff  
#def wait_for_feedback(timeout=3.0): 
 #   t0 = time.time() 
  #  while time.time() - t0 < timeout: 
        # got at least one message? 
   #     if hasattr(msg, "imu_angles_rpy") and len(msg.imu_angles_rpy) == 3: 
    #        return True 
     #   time.sleep(0.01) 
    #return False 
 
#def calibrate_imu(duration=1.5): 
 #   print(f"[CAL] Hold robot still ~{duration}s to calibrate IMU zero...") 
  #  xs, ys, zs = [], [], [] 
   # t0 = time.time() 
    #while time.time() - t0 < duration: 
      #  xs.append(msg.imu_angles_rpy[0]) 
       # ys.append(msg.imu_angles_rpy[1]) 
        #zs.append(msg.imu_angles_rpy[2]) 
        #time.sleep(0.005)  # ~200 Hz 
    #x0 = float(np.mean(xs)) 
    #y0 = float(np.mean(ys)) 
    #z0 = float(np.mean(zs)) 
    #print(f"[CAL] Offsets -> theta_x_0={x0:.4f}, theta_y_0={y0:.4f}, 
theta_z_0={z0:.4f}") 
    #return x0, y0, z0 

 
File 2: Steering.py 
""" 
General framework for ball-bot control for students to update as desired. 
You may wish to make multiple versions of this file to run your ball-bot in 
different modes! 
 
struct mbot_balbot_feedback_t 
{ 
    int64_t utime; 
    int32_t enc_ticks[3];       // absolute postional ticks 
    int32_t enc_delta_ticks[3]; // number of ticks since last step 
    int32_t enc_delta_time;     // [usec] 
    float imu_angles_rpy[3];    // [radian] 
    float volts[4];             // volts 
} 
 
""" 
 
import time 
import lcm 
import threading 
import numpy as np 
from mbot_lcm_msgs.mbot_motor_pwm_t import mbot_motor_pwm_t 
from mbot_lcm_msgs.mbot_balbot_feedback_t import mbot_balbot_feedback_t 
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from DataLogger3 import dataLogger 
from ps4_controller_api import PS4InputHandler 
 
# Constants for the control loop 
FREQ = 200  # Frequency of control loop [Hz] 
DT = 1 / FREQ  # Time step for each iteration [sec] 
PWM_MAX = 0.98  # Max motor signal for full accel/decel of motor test (keep 
between 0 and 1) 
N_GEARBOX = 70 # Motor gearbox ratio 
N_ENC = 64 # Ticks per revolution of encoder 
R_W = 0.048 # Radii of omni-wheels [m] 
R_K = 0.121 # Radius of basketball [m] 
IMU_DEADZONE = np.radians(.3)  # 0.5 degrees in radians ≈ 0.00873 rad 
 
# Steering constants 
THETA_MAX = np.radians(3)     
ALPHA_THETA = 0.005          
Tz_scale = 0.4 
 
# Global flags to control the listening thread & msg data 
listening = False 
msg = mbot_balbot_feedback_t() 
last_time = 0 
last_seen = {"MBOT_BALBOT_FEEDBACK": 0} 
 
def feedback_handler(channel, data): 
    """Callback function to handle received mbot_balbot_feedback_t messages""" 
    global msg 
    global last_seen 
    global last_time 
    last_time = time.time() 
    last_seen[channel] = time.time() 
    msg = mbot_balbot_feedback_t.decode(data) 
 
 
#Filtering  
def apply_deadzone(x, deadzone): 
    """ 
    Apply a deadzone filter to sensor readings. 
    Values within ±deadzone are set to zero to filter out noise. 
    This prevents constant small corrections due to sensor noise. 
    """ 
    if abs(x) < deadzone: 
        return 0.0 
    return x 
    
 
def lcm_listener(lc): 
    """Function to continuously listen for LCM messages in a separate thread""" 
    global listening 
    while listening: 
        try: 
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            lc.handle_timeout(100)  # 100ms timeout 
            if time.time() - last_time > 2.0: 
                print("LCM Publisher seems inactive...") 
            elif time.time() - last_seen["MBOT_BALBOT_FEEDBACK"] > 2.0: 
                print("LCM MBOT_BALBOT_FEEDBACK node seems inactive...") 
        except Exception as e: 
            print(f"LCM listening error: {e}") 
            break 
 
# Motor encoder ticks to wheel angle (radians)  
def calc_enc2rad(ticks): 
    rad = (2 * np.pi * ticks) / (N_ENC * N_GEARBOX) 
    return rad 
 
# Calculate motor torques T1, T2, T3 from Tx, Ty, Tz 
def calc_torque_conv(Tx,Ty,Tz): 
    u1 = (1.0/3.0)*(Tz - 2*np.sqrt(2)*Ty) 
    u2 = (1.0/3.0)*(Tz + np.sqrt(2)*(-1.0*np.sqrt(3)*Tx + Ty)) 
    u3 = (1.0/3.0)*(Tz + np.sqrt(2)*(np.sqrt(3)*Tx + Ty)) 
 
    return u1, u2, u3 
 
# Calculate ball angular position from encoder odometry 
def calc_kinematic_conv(psi1,psi2,psi3): 
    phix = np.sqrt(2.0/3.0) * (R_W/R_K) * (psi2 - psi3) 
    phiy = np.sqrt(2)/3.0 * (R_W/R_K) * (-2 * psi1 + psi2 + psi3) 
    phiz = np.sqrt(2)/3.0 * (R_W/R_K) * (psi1 + psi2 + psi3) 
 
    return phix, phiy, phiz 
 
def func_clip(x,lim_lo,lim_hi): 
    # A function to clip values that exceed a threshold [lim_lo,lim_hi] 
    if x > lim_hi: 
        x = lim_hi 
    elif x < lim_lo: 
        x = lim_lo 
    return x 
 
def main(): 
    # === Data Logging Initialization === 
    trial_num = int(input("Test Number? ")) 
    filename = f"steering_control_{trial_num}.txt" 
    dl = dataLogger(filename) 
 
    # === LCM Initialization === 
    global listening 
    global msg 
    lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=0") 
    subscription = lc.subscribe("MBOT_BALBOT_FEEDBACK", feedback_handler) 
 
    listening = True 

24 



 

    listener_thread = threading.Thread(target=lcm_listener, args=(lc,), 
daemon=True) 
    listener_thread.start() 
    print("Started continuous LCM listener...") 
 
    # Starting encoder reference 
    enc_pos_1_start = msg.enc_ticks[0] 
    enc_pos_2_start = msg.enc_ticks[1] 
    enc_pos_3_start = msg.enc_ticks[2] 
 
    # === Controller Initialization === 
    controller = PS4InputHandler(interface="/dev/input/js0", 
                                 connecting_using_ds4drv=False) 
    controller_thread = threading.Thread(target=controller.listen, args=(10,)) 
    controller_thread.daemon = True 
    controller_thread.start() 
    print("PS4 Controller is active...") 
 
    try: 
        command = mbot_motor_pwm_t() 
 
        # === Main Control Loop === 
        print("Starting balance + lean-steering control loop...") 
        time.sleep(0.5) 
 
        # Data header 
        data_header = [ 
            "i t_now Tx_total Ty_total Tz_total " 
            "psi_1 psi_2 psi_3 dpsi_1 dpsi_2 dpsi_3 " 
            "phi_x phi_y phi_z dphi_x dphi_y dphi_z " 
            "theta_x theta_y theta_z" 
        ] 
        dl.appendData(data_header) 
 
        i = 0 
        t_start = time.time() 
        t_now = 0.0 
 
        enc_pos_1_start = msg.enc_ticks[0] 
        enc_pos_2_start = msg.enc_ticks[1] 
        enc_pos_3_start = msg.enc_ticks[2] 
 
        # Initialize motor commands 
        u1 = u2 = u3 = 0.0 
 
        # Starting IMU orientation (zero reference) 
        theta_x_0 = msg.imu_angles_rpy[0] 
        theta_y_0 = msg.imu_angles_rpy[1] 
        theta_z_0 = msg.imu_angles_rpy[2] 
 
        # Desired lean for balance loop 
        theta_d_x = 0.0 
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        theta_d_y = 0.0 
 
        # Balance PID gains and error 
        Kp_theta = 13.0 
        Ki_theta = 12.0 
        Kd_theta = 0.12 
 
        err_theta_x_prev = 0.0 
        err_theta_y_prev = 0.0 
        int_theta_x = 0.0 
        int_theta_y = 0.0 
 
        # Previous ball angles 
        phi_x_prev = 0.0 
        phi_y_prev = 0.0 
        phi_z_prev = 0.0 
 
        # Motor enable flag 
        motor_on = 0 
 
        # D-pad gain tuning state 
        prev_dpad_up = 0 
        prev_dpad_down = 0 
        prev_dpad_right = 0 
        prev_dpad_left = 0 
        gain_sel = 0            # 0 = Kp_theta, 1 = Ki_theta, 2 = Kd_theta 
        last_gain_change_time = 0.0 
        GAIN_CHANGE_COOLDOWN = 0.12 
        GAIN_INC = {0: 0.1, 1: 0.01, 2: 0.01} 
 
        while True: 
            time.sleep(DT) 
            t_now = time.time() - t_start 
            i += 1 
 
            try: 
                # Read sensors 
                bt_signals = controller.get_signals() 
 
                # Motor enable 
                shoulder_L1 = bt_signals["shoulder_L1"] 
                if shoulder_L1 == 1: 
                    motor_on += 1 
 
                # Joystick and triggers 
                js_R_x = bt_signals["js_R_x"] 
                js_R_y = bt_signals["js_R_y"] 
                trigger_L2 = bt_signals["trigger_L2"] 
                trigger_R2 = bt_signals["trigger_R2"] 
 
                # Raw IMU orientation relative to starting pose 
                theta_x_raw = msg.imu_angles_rpy[0] - theta_x_0 
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                theta_y_raw = msg.imu_angles_rpy[1] - theta_y_0 
                theta_z_raw = msg.imu_angles_rpy[2] - theta_z_0 
 
                # Deadzone filtering 
                theta_x = apply_deadzone(theta_x_raw, IMU_DEADZONE) 
                theta_y = apply_deadzone(theta_y_raw, IMU_DEADZONE) 
                theta_z = apply_deadzone(theta_z_raw, IMU_DEADZONE) 
 
                # Encoders 
                enc_pos_1 = msg.enc_ticks[0] - enc_pos_1_start 
                enc_pos_2 = msg.enc_ticks[1] - enc_pos_2_start 
                enc_pos_3 = msg.enc_ticks[2] - enc_pos_3_start 
 
                enc_dtick_1 = msg.enc_delta_ticks[0] 
                enc_dtick_2 = msg.enc_delta_ticks[1] 
                enc_dtick_3 = msg.enc_delta_ticks[2] 
                enc_dt = msg.enc_delta_time  # [usec] 
 
                # Wheel angles 
                psi_1 = calc_enc2rad(enc_pos_1) 
                psi_2 = calc_enc2rad(enc_pos_2) 
                psi_3 = calc_enc2rad(enc_pos_3) 
 
                # Wheel angular velocities 
                if enc_dt > 0: 
                    dpsi_1 = calc_enc2rad(1e6 * (enc_dtick_1 / enc_dt)) 
                    dpsi_2 = calc_enc2rad(1e6 * (enc_dtick_2 / enc_dt)) 
                    dpsi_3 = calc_enc2rad(1e6 * (enc_dtick_3 / enc_dt)) 
                else: 
                    dpsi_1 = dpsi_2 = dpsi_3 = 0.0 
 
                # Kinematic conversion: wheel angles -> ball angles 
                phi_x, phi_y, phi_z = calc_kinematic_conv(psi_1, psi_2, psi_3) 
 
                # Ball angles -> angular velocities 
                dphi_x = (phi_x - phi_x_prev) / DT 
                dphi_y = (phi_y - phi_y_prev) / DT 
                dphi_z = (phi_z - phi_z_prev) / DT 
 
                phi_x_prev = phi_x 
                phi_y_prev = phi_y 
                phi_z_prev = phi_z 
 
                # Joystick -> lean reference for steering 
                # Stick right  -> lean right (theta_d_x) 
                # Stick forward -> lean forward (theta_d_y) 
                theta_cmd_x = js_R_x * THETA_MAX 
                theta_cmd_y = -js_R_y * THETA_MAX 
                # Filter/smooth movement of setpoint 
                theta_d_x += ALPHA_THETA * (theta_cmd_x - theta_d_x) 
                theta_d_y += ALPHA_THETA * (theta_cmd_y - theta_d_y) 
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                # Balance loop (around lean setpoint) 
                err_theta_x = theta_d_x - theta_x 
                err_theta_y = theta_d_y - theta_y 
 
                int_theta_x += err_theta_x * DT 
                int_theta_y += err_theta_y * DT 
 
                d_err_theta_x = (err_theta_x - err_theta_x_prev) / DT 
                d_err_theta_y = (err_theta_y - err_theta_y_prev) / DT 
 
                # Map lean error to torques 
                Ty_balance = (Kp_theta * err_theta_x + 
                              Ki_theta * int_theta_x + 
                              Kd_theta * d_err_theta_x) 
 
                Tx_balance = (Kp_theta * err_theta_y + 
                              Ki_theta * int_theta_y + 
                              Kd_theta * d_err_theta_y) 
 
                err_theta_x_prev = err_theta_x 
                err_theta_y_prev = err_theta_y 
 
                 
                # Z rotation/steering 
                Tx_steering = 0.0 
                Ty_steering = 0.0 
                Tz_steering = (trigger_R2 - trigger_L2) * Tz_scale 
 
                # D-pad gain tuning 
                dpad_up    = bt_signals["dir_U"] 
                dpad_down  = bt_signals["dir_D"] 
                dpad_right = bt_signals["dir_R"] 
                dpad_left  = bt_signals["dir_L"] 
 
                if t_now - last_gain_change_time > GAIN_CHANGE_COOLDOWN: 
                    if dpad_left == 1 and prev_dpad_left == 0: 
                        gain_sel = (gain_sel - 1) % 3 
                        last_gain_change_time = t_now 
 
                    elif dpad_right == 1 and prev_dpad_right == 0: 
                        gain_sel = (gain_sel + 1) % 3 
                        last_gain_change_time = t_now 
 
                    elif dpad_up == 1 and prev_dpad_up == 0: 
                        inc = GAIN_INC.get(gain_sel, 0.01) 
                        if gain_sel == 0: 
                            Kp_theta += inc 
                        elif gain_sel == 1: 
                            Ki_theta += inc 
                        elif gain_sel == 2: 
                            Kd_theta += inc 
                        last_gain_change_time = t_now 
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                    elif dpad_down == 1 and prev_dpad_down == 0: 
                        inc = GAIN_INC.get(gain_sel, 0.01) 
                        if gain_sel == 0: 
                            Kp_theta -= inc 
                        elif gain_sel == 1: 
                            Ki_theta -= inc 
                        elif gain_sel == 2: 
                            Kd_theta -= inc 
                        last_gain_change_time = t_now 
 
                prev_dpad_up = dpad_up 
                prev_dpad_down = dpad_down 
                prev_dpad_right = dpad_right 
                prev_dpad_left = dpad_left 
 
                 
                # Combine outputs 
                Tx_total = Tx_balance + Tx_steering 
                Ty_total = Ty_balance + Ty_steering 
                Tz_total = Tz_steering 
 
                # Tx,Ty,Tz -> u1,u2,u3 
                u1, u2, u3 = calc_torque_conv(Tx_total, Ty_total, Tz_total) 
 
                # Clip to PWM limits 
                u1 = func_clip(u1, -PWM_MAX, PWM_MAX) 
                u2 = func_clip(u2, -PWM_MAX, PWM_MAX) 
                u3 = func_clip(u3, -PWM_MAX, PWM_MAX) 
 
                # Send individual motor commands 
                cmd_utime = int(time.time() * 1e6) 
                command.utime = cmd_utime 
                if (motor_on >= 1): 
                    command.pwm[0] = -u1 
                    command.pwm[1] = -u2 
                    command.pwm[2] = -u3 
                lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
                 
                # Store data in data logger 
                data = [i, t_now, phi_x, phi_y] 
                dl.appendData(data) 
 
                # Print out data in terminal 
                # TODO: [IF DESIRED]: Update for what info you want to see in 
terminal (note: this is only printed data, not logged!) 
                print( 
                    f"theta_x: {theta_x} | theta_y: {theta_y} | theta_z: 
{theta_z} |" 
                ) 
 
                # Emergency stop 
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                emergency_stop = bt_signals["but_tri"] 
                if emergency_stop == 1: 
                    # Immediately stop all motors 
                    command.pwm = [0.0, 0.0, 0.0] 
                    command.pwm[0] = 0.0 
                    command.pwm[1] = 0.0 
                    command.pwm[2] = 0.0 
 
                    lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
                     
                    print("\n" + "!"*80) 
                    print("!!! EMERGENCY STOP ACTIVATED !!!") 
                    print("!!! Triggered by: TOUCHPAD PRESS !!!") 
                    print("!"*80) 
                    print("\nAll motors stopped. Exiting control loop 
safely...") 
                    print("System halted.\n") 
                     
                    # Exit the control loop 
                    break  # Exits the while True loop 
 
                # Zero the IMU 
                shoulder_R1 = bt_signals["shoulder_R1"] 
                if shoulder_R1 == 1: 
                    theta_x_0 = msg.imu_angles_rpy[0] 
                    theta_y_0 = msg.imu_angles_rpy[1] 
                    theta_z_0 = msg.imu_angles_rpy[2] 
 
 
            except KeyError: 
                print("Waiting for sensor data...") 
 
    except KeyboardInterrupt: 
        print("\nKeyboard interrupt received. Stopping motors...") 
        # Emergency stop 
        command = mbot_motor_pwm_t() 
        command.utime = int(time.time() * 1e6) 
        command.pwm[0] = 0.0 
        command.pwm[1] = 0.0 
        command.pwm[2] = 0.0 
        lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
     
    finally: 
        # Save/log data 
        print(f"Saving data as {filename}...") 
        dl.writeOut()  # Write logged data to the file 
        # Stop the listener thread 
        listening = False 
        print("Stopping LCM listener...") 
        listener_thread.join(timeout=1)  # Wait up to 1 second for thread to 
finish 
        # Stop Bluetooth thread 
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        controller_thread.join(timeout=1)  # Wait up to 1 second for thread to 
finish 
        controller.on_options_press() 
        # Stop motors 
        print("Shutting down motors...\n") 
        command = mbot_motor_pwm_t() 
        command.utime = int(time.time() * 1e6) 
        command.pwm[0] = 0.0 
        command.pwm[1] = 0.0 
        command.pwm[2] = 0.0 
        lc.publish("MBOT_MOTOR_PWM_CMD", command.encode()) 
 
if __name__ == "__main__": 
    main() 
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